Jinju Ma , Weiyu Wang , Wei Huang , Wei Liu , Xinding Yao , Tao Li , Baozeng Ren
{"title":"Numerically investigation of particle distribution in industrial-scale DTB crystallizer based on CFD modelling","authors":"Jinju Ma , Weiyu Wang , Wei Huang , Wei Liu , Xinding Yao , Tao Li , Baozeng Ren","doi":"10.1016/j.partic.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>The suspension state of crystals in the crystallizer is one of the important indicators for evaluating the adaptability of the crystallizer. This study adopted the Euler-Eulerian two-fluid model to simulate and analyze the fluid motion of solid-liquid two-phase flow in the industrial-grade DTB crystallization kettle, as well as the phase suspension distribution of crystal particles. The main influencing factors investigated are: the heat transfer effect, the height of the bottom of the crystallizer, the number and position of the stirring paddle, crystal size and crystal volume fraction. Based on the research of Euler-Eulerian method to simulate fluids, the Euler-Lagrangian method was further used to simulate the motion state of particle phases with different particle sizes in the crystallizer. It was found that the designed DTB crystallizer has good recycle mixing effect. The particles can be mixed evenly during the operation, which can fully realize the solid-liquid mixing and suspension effect of the drug under study.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"93 ","pages":"Pages 186-202"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001159","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The suspension state of crystals in the crystallizer is one of the important indicators for evaluating the adaptability of the crystallizer. This study adopted the Euler-Eulerian two-fluid model to simulate and analyze the fluid motion of solid-liquid two-phase flow in the industrial-grade DTB crystallization kettle, as well as the phase suspension distribution of crystal particles. The main influencing factors investigated are: the heat transfer effect, the height of the bottom of the crystallizer, the number and position of the stirring paddle, crystal size and crystal volume fraction. Based on the research of Euler-Eulerian method to simulate fluids, the Euler-Lagrangian method was further used to simulate the motion state of particle phases with different particle sizes in the crystallizer. It was found that the designed DTB crystallizer has good recycle mixing effect. The particles can be mixed evenly during the operation, which can fully realize the solid-liquid mixing and suspension effect of the drug under study.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.