Numerically investigation of particle distribution in industrial-scale DTB crystallizer based on CFD modelling

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL
Jinju Ma , Weiyu Wang , Wei Huang , Wei Liu , Xinding Yao , Tao Li , Baozeng Ren
{"title":"Numerically investigation of particle distribution in industrial-scale DTB crystallizer based on CFD modelling","authors":"Jinju Ma ,&nbsp;Weiyu Wang ,&nbsp;Wei Huang ,&nbsp;Wei Liu ,&nbsp;Xinding Yao ,&nbsp;Tao Li ,&nbsp;Baozeng Ren","doi":"10.1016/j.partic.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>The suspension state of crystals in the crystallizer is one of the important indicators for evaluating the adaptability of the crystallizer. This study adopted the Euler-Eulerian two-fluid model to simulate and analyze the fluid motion of solid-liquid two-phase flow in the industrial-grade DTB crystallization kettle, as well as the phase suspension distribution of crystal particles. The main influencing factors investigated are: the heat transfer effect, the height of the bottom of the crystallizer, the number and position of the stirring paddle, crystal size and crystal volume fraction. Based on the research of Euler-Eulerian method to simulate fluids, the Euler-Lagrangian method was further used to simulate the motion state of particle phases with different particle sizes in the crystallizer. It was found that the designed DTB crystallizer has good recycle mixing effect. The particles can be mixed evenly during the operation, which can fully realize the solid-liquid mixing and suspension effect of the drug under study.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"93 ","pages":"Pages 186-202"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001159","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The suspension state of crystals in the crystallizer is one of the important indicators for evaluating the adaptability of the crystallizer. This study adopted the Euler-Eulerian two-fluid model to simulate and analyze the fluid motion of solid-liquid two-phase flow in the industrial-grade DTB crystallization kettle, as well as the phase suspension distribution of crystal particles. The main influencing factors investigated are: the heat transfer effect, the height of the bottom of the crystallizer, the number and position of the stirring paddle, crystal size and crystal volume fraction. Based on the research of Euler-Eulerian method to simulate fluids, the Euler-Lagrangian method was further used to simulate the motion state of particle phases with different particle sizes in the crystallizer. It was found that the designed DTB crystallizer has good recycle mixing effect. The particles can be mixed evenly during the operation, which can fully realize the solid-liquid mixing and suspension effect of the drug under study.

Abstract Image

基于 CFD 建模的工业规模 DTB 结晶器颗粒分布数值研究
结晶器中晶体的悬浮状态是评价结晶器适应性的重要指标之一。本研究采用欧拉-欧勒二流体模型模拟分析了工业级 DTB 结晶釜内固液两相流的流体运动以及晶体颗粒的相悬浮分布。研究的主要影响因素包括:传热效果、结晶器底部高度、搅拌桨的数量和位置、晶体尺寸和晶体体积分数。在研究欧拉-欧拉法模拟流体的基础上,进一步采用欧拉-拉格朗日法模拟结晶器中不同粒度颗粒相的运动状态。结果发现,所设计的 DTB 结晶器具有良好的循环混合效果。颗粒在运行过程中能够均匀混合,充分实现了所研究药物的固液混合和悬浮效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信