{"title":"General inferential limits under differential and Pufferfish privacy","authors":"James Bailie , Ruobin Gong","doi":"10.1016/j.ijar.2024.109242","DOIUrl":null,"url":null,"abstract":"<div><p>Differential privacy (DP) is a class of mathematical standards for assessing the privacy provided by a data-release mechanism. This work concerns two important flavors of DP that are related yet conceptually distinct: pure <em>ε</em>-differential privacy (<em>ε</em>-DP) and Pufferfish privacy. We restate <em>ε</em>-DP and Pufferfish privacy as Lipschitz continuity conditions and provide their formulations in terms of an object from the imprecise probability literature: the interval of measures. We use these formulations to derive limits on key quantities in frequentist hypothesis testing and in Bayesian inference using data that are sanitised according to either of these two privacy standards. Under very mild conditions, the results in this work are valid for arbitrary parameters, priors and data generating models. These bounds are weaker than those attainable when analysing specific data generating models or data-release mechanisms. However, they provide generally applicable limits on the ability to learn from differentially private data – even when the analyst's knowledge of the model or mechanism is limited. They also shed light on the semantic interpretations of the two DP flavors under examination, a subject of contention in the current literature.<span><sup>1</sup></span></p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"172 ","pages":"Article 109242"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001294","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Differential privacy (DP) is a class of mathematical standards for assessing the privacy provided by a data-release mechanism. This work concerns two important flavors of DP that are related yet conceptually distinct: pure ε-differential privacy (ε-DP) and Pufferfish privacy. We restate ε-DP and Pufferfish privacy as Lipschitz continuity conditions and provide their formulations in terms of an object from the imprecise probability literature: the interval of measures. We use these formulations to derive limits on key quantities in frequentist hypothesis testing and in Bayesian inference using data that are sanitised according to either of these two privacy standards. Under very mild conditions, the results in this work are valid for arbitrary parameters, priors and data generating models. These bounds are weaker than those attainable when analysing specific data generating models or data-release mechanisms. However, they provide generally applicable limits on the ability to learn from differentially private data – even when the analyst's knowledge of the model or mechanism is limited. They also shed light on the semantic interpretations of the two DP flavors under examination, a subject of contention in the current literature.1
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.