Scalable fabrication of integrated covalent organic framework membrane with selective ion transport for efficient salinity gradient energy harvesting

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiaojun Sun , Mengting Di , Li Gao , Xiaobin Jiang , Xuehua Ruan , Xiaoming Yan , Gaohong He
{"title":"Scalable fabrication of integrated covalent organic framework membrane with selective ion transport for efficient salinity gradient energy harvesting","authors":"Xiaojun Sun ,&nbsp;Mengting Di ,&nbsp;Li Gao ,&nbsp;Xiaobin Jiang ,&nbsp;Xuehua Ruan ,&nbsp;Xiaoming Yan ,&nbsp;Gaohong He","doi":"10.1016/j.nanoen.2024.109959","DOIUrl":null,"url":null,"abstract":"<div><p>Interfacial polymerization (IP) is a promising approach for preparing covalent organic framework (COF) membranes in energy storage and conversion applications. However, it is a great challenge for traditional IP with water-organic phase to obtain pre-designable and robust COF membranes. Herein, a \"one-pot\" organic-organic IP/in situ integration approach, constructing three typical β-ketoenamine COF composite membranes with a maximum area of &gt; 600 cm<sup>2</sup>, are reported. The dual organic phases exhibit comprehensive solubility to precursors, facilitating the synthesis of more types of COFs. In this \"one-pot\" approach, the porous supporting substrate is in situ formed underneath the COF layer via variable-temperature evaporation of two organic solutions without transfer process. It makes some substrate polymers embedded into the COF layer and accomplishes the interlock of two layers at the interface, producing a robust composite membrane. The prepared COF composite membrane exhibits effective sieving capability for Na<sup>+</sup>/Mg<sup>2+</sup> and achieves a maximum power density of over 1 W m<sup>−2</sup> in the reverse electrodialysis power generation, even using the Na<sup>+</sup>/Mg<sup>2+</sup> mixed solution. This approach allows for preferably customization of membrane structures, which can expand the applications of COF membranes in separation.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524007080","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial polymerization (IP) is a promising approach for preparing covalent organic framework (COF) membranes in energy storage and conversion applications. However, it is a great challenge for traditional IP with water-organic phase to obtain pre-designable and robust COF membranes. Herein, a "one-pot" organic-organic IP/in situ integration approach, constructing three typical β-ketoenamine COF composite membranes with a maximum area of > 600 cm2, are reported. The dual organic phases exhibit comprehensive solubility to precursors, facilitating the synthesis of more types of COFs. In this "one-pot" approach, the porous supporting substrate is in situ formed underneath the COF layer via variable-temperature evaporation of two organic solutions without transfer process. It makes some substrate polymers embedded into the COF layer and accomplishes the interlock of two layers at the interface, producing a robust composite membrane. The prepared COF composite membrane exhibits effective sieving capability for Na+/Mg2+ and achieves a maximum power density of over 1 W m−2 in the reverse electrodialysis power generation, even using the Na+/Mg2+ mixed solution. This approach allows for preferably customization of membrane structures, which can expand the applications of COF membranes in separation.

Abstract Image

可扩展地制造具有选择性离子传输功能的集成共价有机框架膜,实现高效的盐度梯度能量采集
界面聚合(IP)是制备能量储存和转换应用中共价有机框架(COF)膜的一种前景广阔的方法。然而,对于传统的水有机相 IP 来说,要获得可预先设计且坚固耐用的 COF 膜是一项巨大挑战。本文报告了一种 "一锅式 "有机-有机 IP/原位集成方法,构建了三种典型的β-酮烯胺 COF 复合膜,其最大面积为 600 平方厘米。双有机相对前驱体具有全面的溶解性,有助于合成更多类型的 COF。在这种 "一锅式 "方法中,多孔支撑基底是通过两种有机溶液的变温蒸发在 COF 层下原位形成的,无需转移过程。它使一些基底聚合物嵌入 COF 层,并在界面上实现了两层膜的互锁,从而制备出坚固的复合膜。制备的 COF 复合膜对 Na+/Mg2+ 具有有效的筛分能力,即使使用 Na+/Mg2+ 混合溶液,在反向电渗析发电中也能达到超过 1 W m-2 的最大功率密度。这种方法允许优先定制膜结构,从而扩大了 COF 膜在分离领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信