Yielding behaviour of chemically treated Pseudomonas fluorescens biofilms

IF 5.9 Q1 MICROBIOLOGY
Samuel G.V. Charlton , Saikat Jana , Jinju Chen
{"title":"Yielding behaviour of chemically treated Pseudomonas fluorescens biofilms","authors":"Samuel G.V. Charlton ,&nbsp;Saikat Jana ,&nbsp;Jinju Chen","doi":"10.1016/j.bioflm.2024.100209","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanics of biofilms are intrinsically shaped by their physicochemical environment. By understanding the influence of the extracellular matrix composition, pH and elevated levels of cationic species on the biofilm rheology, novel living materials with tuned properties can be formulated. In this study, we examine the role of a chaotropic agent (urea), two divalent cations and distilled deionized water on the nonlinear viscoelasticity of a model biofilm <em>Pseudomonas fluorescens</em>. The structural breakdown of each biofilm is quantified using tools of non-linear rheology. Our findings reveal that urea induced a softening response, and displayed strain overshoots comparable to distilled deionized water, without altering the microstructural packing fraction and macroscale morphology. The absorption of divalent ferrous and calcium cations into the biofilm matrix resulted in stiffening and a reduction in normalized elastic energy dissipation, accompanied by macroscale morphological wrinkling and moderate increases in the packing fraction. Notably, ferrous ions induced a predominance of rate dependent yielding, whereas the calcium ions resulted in equal contribution from both rate and strain dependent yielding and structural breakdown of the biofilms. Together, these results indicate that strain rate increasingly becomes an important factor controlling biofilm fluidity with cation-induced biofilm stiffening. The finding can help inform effective biofilm removal protocols and in development of bio-inks for additive manufacturing of biofilm derived materials.</p></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"8 ","pages":"Article 100209"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590207524000340/pdfft?md5=e0fa5ba7428e1a9a6cb181f197016457&pid=1-s2.0-S2590207524000340-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590207524000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanics of biofilms are intrinsically shaped by their physicochemical environment. By understanding the influence of the extracellular matrix composition, pH and elevated levels of cationic species on the biofilm rheology, novel living materials with tuned properties can be formulated. In this study, we examine the role of a chaotropic agent (urea), two divalent cations and distilled deionized water on the nonlinear viscoelasticity of a model biofilm Pseudomonas fluorescens. The structural breakdown of each biofilm is quantified using tools of non-linear rheology. Our findings reveal that urea induced a softening response, and displayed strain overshoots comparable to distilled deionized water, without altering the microstructural packing fraction and macroscale morphology. The absorption of divalent ferrous and calcium cations into the biofilm matrix resulted in stiffening and a reduction in normalized elastic energy dissipation, accompanied by macroscale morphological wrinkling and moderate increases in the packing fraction. Notably, ferrous ions induced a predominance of rate dependent yielding, whereas the calcium ions resulted in equal contribution from both rate and strain dependent yielding and structural breakdown of the biofilms. Together, these results indicate that strain rate increasingly becomes an important factor controlling biofilm fluidity with cation-induced biofilm stiffening. The finding can help inform effective biofilm removal protocols and in development of bio-inks for additive manufacturing of biofilm derived materials.

经化学处理的荧光假单胞菌生物膜的产量行为
生物膜的力学特性受其物理化学环境的内在影响。通过了解细胞外基质成分、pH 值和阳离子物种水平升高对生物膜流变学的影响,可以配制出具有可调特性的新型生物材料。在本研究中,我们研究了混沌剂(尿素)、两种二价阳离子和蒸馏去离子水对模型生物膜荧光假单胞菌非线性粘弹性的作用。利用非线性流变学工具对每种生物膜的结构分解进行了量化。我们的研究结果表明,尿素会引起软化反应,并显示出与蒸馏去离子水相当的应变过冲,但不会改变微观结构的堆积分数和宏观形态。生物膜基质吸收二价亚铁离子和钙离子后会导致变硬和归一化弹性能量耗散的减少,同时伴随着宏观形态的起皱和堆积分数的适度增加。值得注意的是,亚铁离子主要引起速率依赖性屈服,而钙离子则导致速率和应变依赖性屈服以及生物膜结构破坏。这些结果表明,随着阳离子诱导的生物膜硬化,应变速率日益成为控制生物膜流动性的重要因素。这一发现有助于制定有效的生物膜清除方案,以及开发用于生物膜衍生材料增材制造的生物墨水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofilm
Biofilm MICROBIOLOGY-
CiteScore
7.50
自引率
1.50%
发文量
30
审稿时长
57 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信