An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders.

IF 6.4 2区 医学 Q1 ENVIRONMENTAL SCIENCES
Hajar Heidari, David A Lawrence
{"title":"An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders.","authors":"Hajar Heidari, David A Lawrence","doi":"10.1080/10937404.2024.2378406","DOIUrl":null,"url":null,"abstract":"<p><p>The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":" ","pages":"233-263"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2024.2378406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.

综合探讨环境压力对微生物组-肠-脑轴的影响以及促进神经系统疾病的免疫机制。
微生物组-肠-脑轴会受到环境压力的改变,如高温、饮食、污染物以及空气、水和土壤中的微生物。这些压力可能会通过改变微生物的组成或位置来改变宿主的微生物组和共生关系。互利共生的微生物在宿主体内促进有益的相互作用,从而产生循环代谢物和激素,如影响器官间功能的胰岛素和瘦素。环境压力诱发的炎症和氧化压力可能会改变微生物群落中微生物的组成、分布和活动,从而导致代谢物和激素的变化不再有益。微生物组-肠-脑轴和免疫不良变化可能会伴随着环境应激因素而发生,这些变化对先天性和适应性免疫细胞的影响可能会使宿主免疫对病原体的反应减弱,而对自身抗原的反应增强。器官的心血管和体液交换可能会对器官功能产生不利影响。器官,尤其是大脑,需要持续的营养供应和碎片清除;压力因素会破坏这些交换,肠道微生物组的参与也会影响阿尔茨海默病、自闭症谱系障碍、病毒感染和自身免疫性疾病的神经功能。本综述的重点包括环境应激因素可能破坏肠道微生物群,导致免疫和激素对与高同型半胱氨酸血症、炎症和氧化应激有关的神经病理学发展产生不利影响的方式,以及某些治疗方法可能带来的益处。本研究探讨了减轻环境应激因素对中枢和外周健康有害影响的策略,旨在:(1)了解神经系统疾病;(2)促进环境和公共健康与福祉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.80
自引率
6.90%
发文量
13
审稿时长
>24 weeks
期刊介绍: "Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health. Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews." The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信