INDELpred: Improving the prediction and interpretation of indel pathogenicity within the clinical genome.

IF 3.3 Q2 GENETICS & HEREDITY
HGG Advances Pub Date : 2024-10-10 Epub Date: 2024-07-10 DOI:10.1016/j.xhgg.2024.100325
Yilin Wei, Tongda Zhang, Bangyao Wang, Xiaosen Jiang, Fei Ling, Mingyan Fang, Xin Jin, Yong Bai
{"title":"INDELpred: Improving the prediction and interpretation of indel pathogenicity within the clinical genome.","authors":"Yilin Wei, Tongda Zhang, Bangyao Wang, Xiaosen Jiang, Fei Ling, Mingyan Fang, Xin Jin, Yong Bai","doi":"10.1016/j.xhgg.2024.100325","DOIUrl":null,"url":null,"abstract":"<p><p>Small insertions and deletions (indels) are critical yet challenging genetic variations with significant clinical implications. However, the identification of pathogenic indels from neutral variants in clinical contexts remains an understudied problem. Here, we developed INDELpred, a machine-learning-based predictive model for discerning pathogenic from benign indels. INDELpred was established based on key features, including allele frequency, indel length, function-based features, and gene-based features. A set of comprehensive evaluation analyses demonstrated that INDELpred exhibited superior performance over competing methods in terms of computational efficiency and prediction accuracy. Importantly, INDELpred highlighted the crucial role of function-based features in identifying pathogenic indels, with a clear interpretability of the features in understanding the disease-causing variants. We envisage INDELpred as a desirable tool for the detection of pathogenic indels within large-scale genomic datasets, thereby enhancing the precision of genetic diagnoses in clinical settings.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2024.100325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Small insertions and deletions (indels) are critical yet challenging genetic variations with significant clinical implications. However, the identification of pathogenic indels from neutral variants in clinical contexts remains an understudied problem. Here, we developed INDELpred, a machine-learning-based predictive model for discerning pathogenic from benign indels. INDELpred was established based on key features, including allele frequency, indel length, function-based features, and gene-based features. A set of comprehensive evaluation analyses demonstrated that INDELpred exhibited superior performance over competing methods in terms of computational efficiency and prediction accuracy. Importantly, INDELpred highlighted the crucial role of function-based features in identifying pathogenic indels, with a clear interpretability of the features in understanding the disease-causing variants. We envisage INDELpred as a desirable tool for the detection of pathogenic indels within large-scale genomic datasets, thereby enhancing the precision of genetic diagnoses in clinical settings.

INDELpred:改进临床基因组中 InDel 致病性的预测和解释。
小的插入和缺失(InDels)是关键而又具有挑战性的遗传变异,对临床有重大影响。然而,从临床中性变异中识别致病性 InDels 仍是一个研究不足的问题。在此,我们开发了基于机器学习的 INDELpred 预测模型,用于鉴别致病性和良性 InDels。INDELpred 是基于等位基因频率、InDel 长度、基于功能的特征和基于基因的特征等关键特征建立的。一系列综合评估分析表明,INDELpred 在计算效率和预测准确性方面都优于其他竞争方法。重要的是,INDELpred 突出了基于功能的特征在识别致病性 InDels 中的关键作用,而且这些特征在理解致病变异方面具有明确的可解释性。我们认为 INDELpred 是在大规模基因组数据集中检测致病性 InDels 的理想工具,可提高临床遗传诊断的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信