Lislie Gabriela Santin, Henrique Min Ho Lee, Viviane Mariano da Silva, Ellison Fernando Cardoso, Murilo Gleyson Gazzola
{"title":"Natural language processing in the classification of radiology reports in benign gallbladder diseases.","authors":"Lislie Gabriela Santin, Henrique Min Ho Lee, Viviane Mariano da Silva, Ellison Fernando Cardoso, Murilo Gleyson Gazzola","doi":"10.1590/0100-3984.2023.0096-en","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a natural language processing application capable of automatically identifying benign gallbladder diseases that require surgery, from radiology reports.</p><p><strong>Materials and methods: </strong>We developed a text classifier to classify reports as describing benign diseases of the gallbladder that do or do not require surgery. We randomly selected 1,200 reports describing the gallbladder from our database, including different modalities. Four radiologists classified the reports as describing benign disease that should or should not be treated surgically. Two deep learning architectures were trained for classification: a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM) network. In order to represent words in vector form, the models included a Word2Vec representation, with dimensions of 300 or 1,000. The models were trained and evaluated by dividing the dataset into training, validation, and subsets (80/10/10).</p><p><strong>Results: </strong>The CNN and BiLSTM performed well in both dimensional spaces. For the 300- and 1,000-dimensional spaces, respectively, the F1-scores were 0.95945 and 0.95302 for the CNN model, compared with 0.96732 and 0.96732 for the BiLSTM model.</p><p><strong>Conclusion: </strong>Our models achieved high performance, regardless of the architecture and dimensional space employed.</p>","PeriodicalId":20842,"journal":{"name":"Radiologia Brasileira","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Brasileira","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0100-3984.2023.0096-en","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To develop a natural language processing application capable of automatically identifying benign gallbladder diseases that require surgery, from radiology reports.
Materials and methods: We developed a text classifier to classify reports as describing benign diseases of the gallbladder that do or do not require surgery. We randomly selected 1,200 reports describing the gallbladder from our database, including different modalities. Four radiologists classified the reports as describing benign disease that should or should not be treated surgically. Two deep learning architectures were trained for classification: a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM) network. In order to represent words in vector form, the models included a Word2Vec representation, with dimensions of 300 or 1,000. The models were trained and evaluated by dividing the dataset into training, validation, and subsets (80/10/10).
Results: The CNN and BiLSTM performed well in both dimensional spaces. For the 300- and 1,000-dimensional spaces, respectively, the F1-scores were 0.95945 and 0.95302 for the CNN model, compared with 0.96732 and 0.96732 for the BiLSTM model.
Conclusion: Our models achieved high performance, regardless of the architecture and dimensional space employed.