Bacterial diversity and geomicrobiology of Winter Wonderland ice cave, Utah, USA

IF 3.9 3区 生物学 Q2 MICROBIOLOGY
MicrobiologyOpen Pub Date : 2024-07-12 DOI:10.1002/mbo3.1426
Miranda Herschel Seixas, Jeffrey S. Munroe, Erin M. Eggleston
{"title":"Bacterial diversity and geomicrobiology of Winter Wonderland ice cave, Utah, USA","authors":"Miranda Herschel Seixas,&nbsp;Jeffrey S. Munroe,&nbsp;Erin M. Eggleston","doi":"10.1002/mbo3.1426","DOIUrl":null,"url":null,"abstract":"<p>The Winter Wonderland ice cave, located at an elevation of 3140 m above sea level in the Uinta Mountains of northern Utah, USA, maintains a constant sub-zero temperature. Seasonal snowmelt and rain enter the cave, freeze on the surface of the existing ice, and contribute to a 3-m-thick layered ice mass. This ice mass contains organic matter and cryogenic cave carbonates (CCCs) that date back centuries. In this study, samples of ice, liquid water, and exposed CCCs were collected to examine the bacterial communities within the cave and to determine if these communities vary spatially and between sample types. Flow cytometry showed that cell counts are an order of magnitude higher in liquid water samples than in ice. Epifluorescence microscopy and scanning electron microscopy imaging revealed potential coccoid and bacillus microbial morphologies in water samples and putative cells or calcite spherules in the CCCs. The diversity of bacteria associated with soil, identified through sequence-based analysis, supports the hypothesis that water enters the cave by filtering through soil and bedrock. A differential abundance of bacterial taxa was observed between sample types, with the greatest diversity found in CCCs. This supports a geomicrobiological framework where microbes aggregate in the water, sink into a concentrated layer, and precipitate out of the ice with the CCCs, thereby reducing the cell counts in the ice. These CCCs may provide essential nutrients for the bacteria or could themselves be products of biomineralization.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1426","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Winter Wonderland ice cave, located at an elevation of 3140 m above sea level in the Uinta Mountains of northern Utah, USA, maintains a constant sub-zero temperature. Seasonal snowmelt and rain enter the cave, freeze on the surface of the existing ice, and contribute to a 3-m-thick layered ice mass. This ice mass contains organic matter and cryogenic cave carbonates (CCCs) that date back centuries. In this study, samples of ice, liquid water, and exposed CCCs were collected to examine the bacterial communities within the cave and to determine if these communities vary spatially and between sample types. Flow cytometry showed that cell counts are an order of magnitude higher in liquid water samples than in ice. Epifluorescence microscopy and scanning electron microscopy imaging revealed potential coccoid and bacillus microbial morphologies in water samples and putative cells or calcite spherules in the CCCs. The diversity of bacteria associated with soil, identified through sequence-based analysis, supports the hypothesis that water enters the cave by filtering through soil and bedrock. A differential abundance of bacterial taxa was observed between sample types, with the greatest diversity found in CCCs. This supports a geomicrobiological framework where microbes aggregate in the water, sink into a concentrated layer, and precipitate out of the ice with the CCCs, thereby reducing the cell counts in the ice. These CCCs may provide essential nutrients for the bacteria or could themselves be products of biomineralization.

Abstract Image

美国犹他州冬季仙境冰洞的细菌多样性和地质微生物学。
冬季仙境冰洞位于美国犹他州北部乌因塔山脉海拔 3140 米处,保持着零度以下的恒温。季节性融雪和雨水进入洞穴,在现有冰层表面冻结,形成 3 米厚的分层冰块。冰层中含有有机物和低温洞穴碳酸盐(CCC),其历史可以追溯到几个世纪以前。在这项研究中,我们采集了冰、液态水和裸露的 CCC 样本,以检查洞穴内的细菌群落,并确定这些群落在空间上和不同样本类型之间是否存在差异。流式细胞仪显示,液态水样本中的细胞数量比冰层中的高出一个数量级。荧光显微镜和扫描电子显微镜成像显示了水样中潜在的茧状和杆菌微生物形态,以及 CCC 中的推测细胞或方解石球。通过序列分析确定的与土壤相关的细菌多样性支持了水通过土壤和基岩过滤进入洞穴的假设。在不同类型的样本中观察到了不同的细菌类群,其中 CCC 中的细菌多样性最高。这支持了一种地质微生物学框架,即微生物在水中聚集,沉入一个浓缩层,然后与 CCC 一起从冰中析出,从而减少冰中的细胞数量。这些 CCC 可能为细菌提供必要的营养物质,也可能本身就是生物矿化的产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MicrobiologyOpen
MicrobiologyOpen MICROBIOLOGY-
CiteScore
8.00
自引率
0.00%
发文量
78
审稿时长
20 weeks
期刊介绍: MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era. The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes. MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to: - agriculture - antimicrobial resistance - astrobiology - biochemistry - biotechnology - cell and molecular biology - clinical microbiology - computational, systems, and synthetic microbiology - environmental science - evolutionary biology, ecology, and systematics - food science and technology - genetics and genomics - geobiology and earth science - host-microbe interactions - infectious diseases - natural products discovery - pharmaceutical and medicinal chemistry - physiology - plant pathology - veterinary microbiology We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses. The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations. MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信