Pavazhaviji Pazhani, Jose Prakash Dharmian, Somasundaram Arumugam, Pavithra Pazhani, Vijaya Vara Prasad Medapati
{"title":"Edoxaban enfolded beta-1,4-poly-d-glucosamine nanoparticles for targeting eponym Stuart-Prower factor for treatment of venous thrombosis.","authors":"Pavazhaviji Pazhani, Jose Prakash Dharmian, Somasundaram Arumugam, Pavithra Pazhani, Vijaya Vara Prasad Medapati","doi":"10.1080/1061186X.2024.2377611","DOIUrl":null,"url":null,"abstract":"<p><p>The present research looked for ways to develop shielded nanoparticles (NPs)-drug transporters made of chitosan (CS) to enhance the bioavailability of edoxaban tosylate monohydrate (ETM) for oral administration by examining the correlation among design aspects and data from experiments using response surface methodology (RSM). ETM-loaded CS nanoparticles (ETM-CS-NPs) were developed using the ionic gelation of CS with tripolyphosphate (TPP). Utilising Zeta-sizer and scanning electron microscopy, the ETM-CS-NPs were evaluated for particle size (PS), zeta potential (ZP), surface morphology, polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Drug and polymer interactions in NPs were assessed using Fourier transform infra-red spectroscopy. The response surface approach and Design-Expert software optimised the ETM-CS-NPs. Using RSM, the effects of independent variables such as the amount of CS, the amount of TPP, and the amount of glacial acetic acid on PS, PDI and ZP were analysed. The optimal combination of PS (354.8 nm), PDI (0.509), ZP (43.7 + mV), % EE (70.3 ± 1.3) and % DL (9.1 ± 0.4) has been identified for the optimised ETM-CS-NPs. ETM-CS-NPs' anticoagulant activity was evaluated using activated partial thromboplastin time (aPTT), prothrombin time (PT) and thrombin time (TT) assays. In conclusion, a practical and consistent method has been established, and its application has been proven <i>in vitro</i>, indicating its utility for future studies of the biological distribution of ETM-CS-NPs <i>in vivo</i> for specific antithrombotic treatments.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1125-1138"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2377611","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The present research looked for ways to develop shielded nanoparticles (NPs)-drug transporters made of chitosan (CS) to enhance the bioavailability of edoxaban tosylate monohydrate (ETM) for oral administration by examining the correlation among design aspects and data from experiments using response surface methodology (RSM). ETM-loaded CS nanoparticles (ETM-CS-NPs) were developed using the ionic gelation of CS with tripolyphosphate (TPP). Utilising Zeta-sizer and scanning electron microscopy, the ETM-CS-NPs were evaluated for particle size (PS), zeta potential (ZP), surface morphology, polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Drug and polymer interactions in NPs were assessed using Fourier transform infra-red spectroscopy. The response surface approach and Design-Expert software optimised the ETM-CS-NPs. Using RSM, the effects of independent variables such as the amount of CS, the amount of TPP, and the amount of glacial acetic acid on PS, PDI and ZP were analysed. The optimal combination of PS (354.8 nm), PDI (0.509), ZP (43.7 + mV), % EE (70.3 ± 1.3) and % DL (9.1 ± 0.4) has been identified for the optimised ETM-CS-NPs. ETM-CS-NPs' anticoagulant activity was evaluated using activated partial thromboplastin time (aPTT), prothrombin time (PT) and thrombin time (TT) assays. In conclusion, a practical and consistent method has been established, and its application has been proven in vitro, indicating its utility for future studies of the biological distribution of ETM-CS-NPs in vivo for specific antithrombotic treatments.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.