Anna L. Silverman , Dennis Shung , Ryan W. Stidham , Gursimran S. Kochhar , Marietta Iacucci
{"title":"How Artificial Intelligence Will Transform Clinical Care, Research, and Trials for Inflammatory Bowel Disease","authors":"Anna L. Silverman , Dennis Shung , Ryan W. Stidham , Gursimran S. Kochhar , Marietta Iacucci","doi":"10.1016/j.cgh.2024.05.048","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) refers to computer-based methodologies that use data to teach a computer to solve pre-defined tasks; these methods can be applied to identify patterns in large multi-modal data sources. AI applications in inflammatory bowel disease (IBD) includes predicting response to therapy, disease activity scoring of endoscopy, drug discovery, and identifying bowel damage in images. As a complex disease with entangled relationships between genomics, metabolomics, microbiome, and the environment, IBD stands to benefit greatly from methodologies that can handle this complexity. We describe current applications, critical challenges, and propose future directions of AI in IBD.</div></div>","PeriodicalId":10347,"journal":{"name":"Clinical Gastroenterology and Hepatology","volume":"23 3","pages":"Pages 428-439.e4"},"PeriodicalIF":11.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1542356524005986","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) refers to computer-based methodologies that use data to teach a computer to solve pre-defined tasks; these methods can be applied to identify patterns in large multi-modal data sources. AI applications in inflammatory bowel disease (IBD) includes predicting response to therapy, disease activity scoring of endoscopy, drug discovery, and identifying bowel damage in images. As a complex disease with entangled relationships between genomics, metabolomics, microbiome, and the environment, IBD stands to benefit greatly from methodologies that can handle this complexity. We describe current applications, critical challenges, and propose future directions of AI in IBD.
期刊介绍:
Clinical Gastroenterology and Hepatology (CGH) is dedicated to offering readers a comprehensive exploration of themes in clinical gastroenterology and hepatology. Encompassing diagnostic, endoscopic, interventional, and therapeutic advances, the journal covers areas such as cancer, inflammatory diseases, functional gastrointestinal disorders, nutrition, absorption, and secretion.
As a peer-reviewed publication, CGH features original articles and scholarly reviews, ensuring immediate relevance to the practice of gastroenterology and hepatology. Beyond peer-reviewed content, the journal includes invited key reviews and articles on endoscopy/practice-based technology, health-care policy, and practice management. Multimedia elements, including images, video abstracts, and podcasts, enhance the reader's experience. CGH remains actively engaged with its audience through updates and commentary shared via platforms such as Facebook and Twitter.