Exploring Hypertrophic Cardiomyopathy Biomarkers through Integrated Bioinformatics Analysis: Uncovering Novel Diagnostic Candidates.

IF 1.8 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Cardiology Research and Practice Pub Date : 2024-07-04 eCollection Date: 2024-01-01 DOI:10.1155/2024/4639334
Guanmou Li, Dongqun Lin, Xiaoping Fan, Bo Peng
{"title":"Exploring Hypertrophic Cardiomyopathy Biomarkers through Integrated Bioinformatics Analysis: Uncovering Novel Diagnostic Candidates.","authors":"Guanmou Li, Dongqun Lin, Xiaoping Fan, Bo Peng","doi":"10.1155/2024/4639334","DOIUrl":null,"url":null,"abstract":"<p><p>HCM is a heterogeneous monogenic cardiac disease that can lead to arrhythmia, heart failure, and atrial fibrillation. This study aims to identify biomarkers that have a positive impact on the treatment, diagnosis, and prediction of HCM through bioinformatics analysis. We selected the GSE36961 and GSE180313 datasets from the Gene Expression Omnibus (GEO) database for differential analysis. GSE36961 generated 6 modules through weighted gene co-expression network analysis (WGCNA), with the green and grey modules showing the highest positive correlation with HCM (green module: cor = 0.88, <i>p</i> = 2<i>e</i> - 48; grey module: cor = 0.78, <i>p</i> = 4<i>e</i> - 31). GSE180313 generated 17 modules through WGCNA, with the turquoise module exhibiting the highest positive correlation with HCM (turquoise module: cor = 0.92, <i>p</i> = 6<i>e</i> - 09). We conducted GO and KEGG pathway analysis on the intersection genes of the selected modules from GSE36961 and GSE180313 and intersected their GO enriched pathways with the GO enriched pathways of endothelial cell subtypes calculated after clustering single-cell data GSE181764, resulting in 383 genes on the enriched pathways. Subsequently, we used LASSO prediction on these 383 genes and identified RTN4, COL4A1, and IER3 as key genes involved in the occurrence and development of HCM. The expression levels of these genes were validated in the GSE68316 and GSE32453 datasets. In conclusion, RTN4, COL4A1, and IER3 are potential biomarkers of HCM, and protein degradation, mechanical stress, and hypoxia may be associated with the occurrence and development of HCM.</p>","PeriodicalId":9494,"journal":{"name":"Cardiology Research and Practice","volume":"2024 ","pages":"4639334"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiology Research and Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/4639334","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

HCM is a heterogeneous monogenic cardiac disease that can lead to arrhythmia, heart failure, and atrial fibrillation. This study aims to identify biomarkers that have a positive impact on the treatment, diagnosis, and prediction of HCM through bioinformatics analysis. We selected the GSE36961 and GSE180313 datasets from the Gene Expression Omnibus (GEO) database for differential analysis. GSE36961 generated 6 modules through weighted gene co-expression network analysis (WGCNA), with the green and grey modules showing the highest positive correlation with HCM (green module: cor = 0.88, p = 2e - 48; grey module: cor = 0.78, p = 4e - 31). GSE180313 generated 17 modules through WGCNA, with the turquoise module exhibiting the highest positive correlation with HCM (turquoise module: cor = 0.92, p = 6e - 09). We conducted GO and KEGG pathway analysis on the intersection genes of the selected modules from GSE36961 and GSE180313 and intersected their GO enriched pathways with the GO enriched pathways of endothelial cell subtypes calculated after clustering single-cell data GSE181764, resulting in 383 genes on the enriched pathways. Subsequently, we used LASSO prediction on these 383 genes and identified RTN4, COL4A1, and IER3 as key genes involved in the occurrence and development of HCM. The expression levels of these genes were validated in the GSE68316 and GSE32453 datasets. In conclusion, RTN4, COL4A1, and IER3 are potential biomarkers of HCM, and protein degradation, mechanical stress, and hypoxia may be associated with the occurrence and development of HCM.

通过综合生物信息学分析探索肥厚型心肌病生物标记物:发现新的诊断候选者。
HCM 是一种异质性单基因心脏病,可导致心律失常、心力衰竭和心房颤动。本研究旨在通过生物信息学分析,找出对 HCM 的治疗、诊断和预测有积极影响的生物标志物。我们从基因表达总库(GEO)数据库中选择了 GSE36961 和 GSE180313 数据集进行差异分析。GSE36961 通过加权基因共表达网络分析(WGCNA)生成了 6 个模块,其中绿色和灰色模块与 HCM 的正相关性最高(绿色模块:cor = 0.88,p = 2e - 48;灰色模块:cor = 0.78,p = 4e - 31)。GSE180313 通过 WGCNA 生成了 17 个模块,其中绿松石模块与 HCM 的正相关性最高(绿松石模块:cor = 0.92,p = 6e - 09)。我们对 GSE36961 和 GSE180313 所选模块的交叉基因进行了 GO 和 KEGG 通路分析,并将其 GO 富集通路与单细胞数据 GSE181764 聚类后计算出的内皮细胞亚型的 GO 富集通路进行交叉,结果发现富集通路上有 383 个基因。随后,我们对这 383 个基因进行了 LASSO 预测,发现 RTN4、COL4A1 和 IER3 是参与 HCM 发生和发展的关键基因。这些基因的表达水平在 GSE68316 和 GSE32453 数据集中得到了验证。总之,RTN4、COL4A1 和 IER3 是 HCM 的潜在生物标志物,蛋白质降解、机械应力和缺氧可能与 HCM 的发生和发展有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiology Research and Practice
Cardiology Research and Practice Medicine-Cardiology and Cardiovascular Medicine
CiteScore
4.40
自引率
0.00%
发文量
64
审稿时长
13 weeks
期刊介绍: Cardiology Research and Practice is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies that focus on the diagnosis and treatment of cardiovascular disease. The journal welcomes submissions related to systemic hypertension, arrhythmia, congestive heart failure, valvular heart disease, vascular disease, congenital heart disease, and cardiomyopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信