Maximum Likelihood Estimation for Unrooted 3-Leaf Trees: An Analytic Solution for the CFN Model.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Max Hill, Sebastien Roch, Jose Israel Rodriguez
{"title":"Maximum Likelihood Estimation for Unrooted 3-Leaf Trees: An Analytic Solution for the CFN Model.","authors":"Max Hill, Sebastien Roch, Jose Israel Rodriguez","doi":"10.1007/s11538-024-01340-x","DOIUrl":null,"url":null,"abstract":"<p><p>Maximum likelihood estimation is among the most widely-used methods for inferring phylogenetic trees from sequence data. This paper solves the problem of computing solutions to the maximum likelihood problem for 3-leaf trees under the 2-state symmetric mutation model (CFN model). Our main result is a closed-form solution to the maximum likelihood problem for unrooted 3-leaf trees, given generic data; this result characterizes all of the ways that a maximum likelihood estimate can fail to exist for generic data and provides theoretical validation for predictions made in Parks and Goldman (Syst Biol 63(5):798-811, 2014). Our proof makes use of both classical tools for studying group-based phylogenetic models such as Hadamard conjugation and reparameterization in terms of Fourier coordinates, as well as more recent results concerning the semi-algebraic constraints of the CFN model. To be able to put these into practice, we also give a complete characterization to test genericity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245464/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01340-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Maximum likelihood estimation is among the most widely-used methods for inferring phylogenetic trees from sequence data. This paper solves the problem of computing solutions to the maximum likelihood problem for 3-leaf trees under the 2-state symmetric mutation model (CFN model). Our main result is a closed-form solution to the maximum likelihood problem for unrooted 3-leaf trees, given generic data; this result characterizes all of the ways that a maximum likelihood estimate can fail to exist for generic data and provides theoretical validation for predictions made in Parks and Goldman (Syst Biol 63(5):798-811, 2014). Our proof makes use of both classical tools for studying group-based phylogenetic models such as Hadamard conjugation and reparameterization in terms of Fourier coordinates, as well as more recent results concerning the semi-algebraic constraints of the CFN model. To be able to put these into practice, we also give a complete characterization to test genericity.

Abstract Image

无根三叶树的最大似然估计:CFN 模型的解析解
最大似然估计是从序列数据中推断系统发生树的最广泛使用的方法之一。本文解决的问题是计算 2 状态对称突变模型(CFN 模型)下 3 叶树的最大似然问题的解。我们的主要结果是在给定通用数据的情况下,无根三叶树最大似然问题的闭式解;这一结果描述了通用数据最大似然估计可能不存在的所有方式,并为 Parks 和 Goldman(《系统生物学》63(5):798-811, 2014)中的预测提供了理论验证。我们的证明既利用了哈达玛共轭和傅里叶坐标重参数化等研究基于群体的系统发育模型的经典工具,也利用了有关 CFN 模型半代数约束的最新成果。为了能够将这些方法付诸实践,我们还给出了检验通用性的完整表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信