Katherine Brumberg, Dylan S Small, Paul R Rosenbaum
{"title":"Optimal refinement of strata to balance covariates.","authors":"Katherine Brumberg, Dylan S Small, Paul R Rosenbaum","doi":"10.1093/biomtc/ujae061","DOIUrl":null,"url":null,"abstract":"<p><p>What is the best way to split one stratum into two to maximally reduce the within-stratum imbalance in many covariates? We formulate this as an integer program and approximate the solution by randomized rounding of a linear program. A linear program may assign a fraction of a person to each refined stratum. Randomized rounding views fractional people as probabilities, assigning intact people to strata using biased coins. Randomized rounding is a well-studied theoretical technique for approximating the optimal solution of certain insoluble integer programs. When the number of people in a stratum is large relative to the number of covariates, we prove the following new results: (i) randomized rounding to split a stratum does very little randomizing, so it closely resembles the linear programming relaxation without splitting intact people; (ii) the linear relaxation and the randomly rounded solution place lower and upper bounds on the unattainable integer programming solution; and because of (i), these bounds are often close, thereby ratifying the usable randomly rounded solution. We illustrate using an observational study that balanced many covariates by forming matched pairs composed of 2016 patients selected from 5735 using a propensity score. Instead, we form 5 propensity score strata and refine them into 10 strata, obtaining excellent covariate balance while retaining all patients. An R package optrefine at CRAN implements the method. Supplementary materials are available online.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae061","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
What is the best way to split one stratum into two to maximally reduce the within-stratum imbalance in many covariates? We formulate this as an integer program and approximate the solution by randomized rounding of a linear program. A linear program may assign a fraction of a person to each refined stratum. Randomized rounding views fractional people as probabilities, assigning intact people to strata using biased coins. Randomized rounding is a well-studied theoretical technique for approximating the optimal solution of certain insoluble integer programs. When the number of people in a stratum is large relative to the number of covariates, we prove the following new results: (i) randomized rounding to split a stratum does very little randomizing, so it closely resembles the linear programming relaxation without splitting intact people; (ii) the linear relaxation and the randomly rounded solution place lower and upper bounds on the unattainable integer programming solution; and because of (i), these bounds are often close, thereby ratifying the usable randomly rounded solution. We illustrate using an observational study that balanced many covariates by forming matched pairs composed of 2016 patients selected from 5735 using a propensity score. Instead, we form 5 propensity score strata and refine them into 10 strata, obtaining excellent covariate balance while retaining all patients. An R package optrefine at CRAN implements the method. Supplementary materials are available online.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.