Constructing Hydrangea-Like Iron-Cobalt Phosphides via Boron-Assisted Strategy as an Efficient Catalyst for Water Splitting at High Current Density

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-07-12 DOI:10.1002/cssc.202400900
Hongzhou Pan, Ruixin Hao, Luyao Wang, Yi Yu, Nan Yang
{"title":"Constructing Hydrangea-Like Iron-Cobalt Phosphides via Boron-Assisted Strategy as an Efficient Catalyst for Water Splitting at High Current Density","authors":"Hongzhou Pan,&nbsp;Ruixin Hao,&nbsp;Luyao Wang,&nbsp;Yi Yu,&nbsp;Nan Yang","doi":"10.1002/cssc.202400900","DOIUrl":null,"url":null,"abstract":"<p>Finding suitable bifunctional catalysts for industrial hydrogen production is the key to fully building a hydrogen energy society. In this study, we present a novel approach to modifying the surface morphology of electrodeposited cobalt phosphide (CoP). Specifically, we have developed a method to create a hydrangea-like structure of bimetallic cobalt-iron phosphide (B-CoFeP@CoP) through ion-exchange and NaBH4-assisted strategies. This catalyst exhibited excellent bifunctional catalytic capability at high current densities, achieving a current density of 500 mA cm<sup>−2</sup> at a small overpotential (387 mV for OER and 252 mV for HER). When assembled into an OWS electrolyzer, this catalyst showed a fairly low cell voltage (≈1.88 V) at 500 mA cm<sup>−2</sup> current density., Furthermore, B-CoFeP@CoP shows ceaseless durability over 120 h in both freshwater and seawater with almost no change in the cell voltage. A combined experimental and theoretical study identified that the unique hydrangea-like structure provided a larger electrochemically active surface area and more effective active sites. Further analysis indicates that during the OER process, phosphides ensure that bimetallic active sites adsorb more OOH <sup>*</sup> intermediates and further DFT calculations showed that B-Fe<sub>2</sub>P and B-Co<sub>2</sub>P acted as active centers for dissociation of H<sub>2</sub>O and desorption of H<sub>2</sub>, respectively, to synergistically catalyze the HER process.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202400900","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Finding suitable bifunctional catalysts for industrial hydrogen production is the key to fully building a hydrogen energy society. In this study, we present a novel approach to modifying the surface morphology of electrodeposited cobalt phosphide (CoP). Specifically, we have developed a method to create a hydrangea-like structure of bimetallic cobalt-iron phosphide (B-CoFeP@CoP) through ion-exchange and NaBH4-assisted strategies. This catalyst exhibited excellent bifunctional catalytic capability at high current densities, achieving a current density of 500 mA cm−2 at a small overpotential (387 mV for OER and 252 mV for HER). When assembled into an OWS electrolyzer, this catalyst showed a fairly low cell voltage (≈1.88 V) at 500 mA cm−2 current density., Furthermore, B-CoFeP@CoP shows ceaseless durability over 120 h in both freshwater and seawater with almost no change in the cell voltage. A combined experimental and theoretical study identified that the unique hydrangea-like structure provided a larger electrochemically active surface area and more effective active sites. Further analysis indicates that during the OER process, phosphides ensure that bimetallic active sites adsorb more OOH * intermediates and further DFT calculations showed that B-Fe2P and B-Co2P acted as active centers for dissociation of H2O and desorption of H2, respectively, to synergistically catalyze the HER process.

Abstract Image

通过硼辅助策略构建绣球花状铁钴磷化物,作为高电流密度水分离的高效催化剂。
为工业制氢寻找合适的双功能催化剂是全面建设氢能社会的关键。在此,我们报告了通过离子交换和 NaBH4 辅助方法对电沉积 CoP 的表面形貌进行调控,以形成绣球状的钴铁双金属磷化物(B-CoFeP@CoP)。这种催化剂在高电流密度条件下表现出卓越的双功能催化能力,在较小的过电位(OER 为 387 mV,HER 为 252 mV)下就能达到 500 mA cm-2 的电流密度。此外,B-CoFeP@CoP 在淡水和海水中均可持续使用 120 小时,电池电压几乎没有变化。综合实验和理论研究发现,独特的绣球状结构提供了更大的电化学活性表面积和更有效的活性位点。进一步的分析表明,在 OER 过程中,磷化物可确保双金属活性位点吸附更多的 OOH * 中间产物,进一步的 DFT 计算表明,B-Fe2P 和 B-Co2P 分别作为解离 H2O 和解吸 H2 的活性中心,协同催化 HER 过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信