Engineering Ni-Co bimetallic interfaces for ambient plasma-catalytic CO2 hydrogenation to methanol

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-08-08 DOI:10.1016/j.chempr.2024.06.022
{"title":"Engineering Ni-Co bimetallic interfaces for ambient plasma-catalytic CO2 hydrogenation to methanol","authors":"","doi":"10.1016/j.chempr.2024.06.022","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma catalysis offers a flexible and decentralized solution for CO<sub>2</sub> hydrogenation to methanol under ambient conditions, avoiding the high temperatures and pressures required for thermal catalysis. However, the reaction mechanism, particularly plasma-assisted surface reactions, remains unclear, limiting the development of efficient catalysts for selective methanol synthesis. Here, we report a bimetallic Ni-Co catalyst effective in plasma-catalytic CO<sub>2</sub> hydrogenation to methanol at 35°C and 0.1 MPa, achieving 46% methanol selectivity and 24% CO<sub>2</sub> conversion. <em>In situ</em> plasma-coupled Fourier transform infrared characterization, along with density functional theory calculations, reveals that the engineered bimetallic sites act as primary active centers for methanol synthesis, promoting the rate-determining step in H-radical-induced reaction pathways by reducing steric hindrance effects. This work demonstrates the significant potential of bimetallic catalysts in plasma-catalytic CO<sub>2</sub> hydrogenation to methanol under ambient conditions, representing a major step toward sustainable CO<sub>2</sub> conversion and fuel production.</p></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451929424003012/pdfft?md5=54d35a2805c07a05ba8a1bec3eed2fcb&pid=1-s2.0-S2451929424003012-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424003012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma catalysis offers a flexible and decentralized solution for CO2 hydrogenation to methanol under ambient conditions, avoiding the high temperatures and pressures required for thermal catalysis. However, the reaction mechanism, particularly plasma-assisted surface reactions, remains unclear, limiting the development of efficient catalysts for selective methanol synthesis. Here, we report a bimetallic Ni-Co catalyst effective in plasma-catalytic CO2 hydrogenation to methanol at 35°C and 0.1 MPa, achieving 46% methanol selectivity and 24% CO2 conversion. In situ plasma-coupled Fourier transform infrared characterization, along with density functional theory calculations, reveals that the engineered bimetallic sites act as primary active centers for methanol synthesis, promoting the rate-determining step in H-radical-induced reaction pathways by reducing steric hindrance effects. This work demonstrates the significant potential of bimetallic catalysts in plasma-catalytic CO2 hydrogenation to methanol under ambient conditions, representing a major step toward sustainable CO2 conversion and fuel production.

Abstract Image

Abstract Image

环境等离子体催化二氧化碳加氢制甲醇的镍钴双金属界面工程设计
等离子体催化为在环境条件下将二氧化碳加氢转化为甲醇提供了灵活、分散的解决方案,避免了热催化所需的高温和高压。然而,反应机理,尤其是等离子体辅助的表面反应仍不清楚,这限制了用于选择性甲醇合成的高效催化剂的开发。在此,我们报告了一种双金属 Ni-Co 催化剂,它能在 35°C 和 0.1 兆帕下有效地进行等离子体催化 CO2 加氢制甲醇,实现 46% 的甲醇选择性和 24% 的 CO2 转化率。原位等离子体耦合傅立叶变换红外表征以及密度泛函理论计算显示,工程化双金属位点可作为甲醇合成的主要活性中心,通过减少立体阻碍效应促进 H-自由基诱导反应途径中的速率决定步骤。这项工作证明了双金属催化剂在环境条件下等离子体催化 CO2 加氢制甲醇方面的巨大潜力,是实现可持续 CO2 转化和燃料生产的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信