Hetvi Pandya, Dev Devaliya, Akshi Shah, Rajendra Kotadiya
{"title":"Chromatography Chronicles: Unveiling the Power of Reversed-phase High-performance Thin Layer Chromatography in Pharmaceutical Analysis","authors":"Hetvi Pandya, Dev Devaliya, Akshi Shah, Rajendra Kotadiya","doi":"10.2174/0115734110320008240628090739","DOIUrl":null,"url":null,"abstract":"Pharmaceutical analysis is critical in ensuring the quality and safety of drug substances and formulations. High-performance thin-layer Chromatography (HPTLC) has emerged as a powerful analytical technique in the pharmaceutical industry due to its numerous advantages, including high separation efficiency, cost-effectiveness, and ease of sample preparation. One of its variants, Reversed-Phase High-Performance Thin-Layer Chromatography (RP-HPTLC), has gained immense popularity for analyzing nonpolar and slightly polar compounds, including drugs and their metabolites. This review paper draws attention to history and the recent developments in RP-HPTLC for pharmaceutical analysis. It highlights the advantages and limitations of RP-HPTLC, discussing its applications in drug analysis, impurity determination, stability-indicating assays, and more. In this study, recent advances in RP-HPTLC instrumentation and techniques were reviewed, including hyphenated methods, such as Reversed-Phase High-Performance Thin-Layer Chromatography coupled with Mass Spectrometry and Reversed-Phase High-Performance Thin-Layer Chromatography coupled with Nuclear Magnetic Resonance. Through this comprehensive analysis, the authors aim to underscore the potential of RP-HPTLC as a reliable and efficient analytical technique in the pharmaceutical industry and shed light on future trends in this field.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"39 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110320008240628090739","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmaceutical analysis is critical in ensuring the quality and safety of drug substances and formulations. High-performance thin-layer Chromatography (HPTLC) has emerged as a powerful analytical technique in the pharmaceutical industry due to its numerous advantages, including high separation efficiency, cost-effectiveness, and ease of sample preparation. One of its variants, Reversed-Phase High-Performance Thin-Layer Chromatography (RP-HPTLC), has gained immense popularity for analyzing nonpolar and slightly polar compounds, including drugs and their metabolites. This review paper draws attention to history and the recent developments in RP-HPTLC for pharmaceutical analysis. It highlights the advantages and limitations of RP-HPTLC, discussing its applications in drug analysis, impurity determination, stability-indicating assays, and more. In this study, recent advances in RP-HPTLC instrumentation and techniques were reviewed, including hyphenated methods, such as Reversed-Phase High-Performance Thin-Layer Chromatography coupled with Mass Spectrometry and Reversed-Phase High-Performance Thin-Layer Chromatography coupled with Nuclear Magnetic Resonance. Through this comprehensive analysis, the authors aim to underscore the potential of RP-HPTLC as a reliable and efficient analytical technique in the pharmaceutical industry and shed light on future trends in this field.
期刊介绍:
Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.