Weakly Compressible Two-Layer Shallow-Water Flows Along Channels

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sarswati Shah, Gerardo Hernández-Dueñas
{"title":"Weakly Compressible Two-Layer Shallow-Water Flows Along Channels","authors":"Sarswati Shah, Gerardo Hernández-Dueñas","doi":"10.1007/s10915-024-02608-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we formulate a model for weakly compressible two-layer shallow water flows with friction in general channels. The formulated model is non-conservative, and in contrast to the incompressible limit, our system is strictly hyperbolic. The generalized Rankine–Hugoniot conditions are provided for the present system with non-conservative products to define weak solutions. We write the Riemann invariants along each characteristic field for channels with constant width in an appendix. A robust well-balanced path-conservative semi-discrete central-upwind scheme is proposed and implemented to validate exact solutions to the Riemann problem. We also present numerical tests in general channels to show the merits of the scheme.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02608-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we formulate a model for weakly compressible two-layer shallow water flows with friction in general channels. The formulated model is non-conservative, and in contrast to the incompressible limit, our system is strictly hyperbolic. The generalized Rankine–Hugoniot conditions are provided for the present system with non-conservative products to define weak solutions. We write the Riemann invariants along each characteristic field for channels with constant width in an appendix. A robust well-balanced path-conservative semi-discrete central-upwind scheme is proposed and implemented to validate exact solutions to the Riemann problem. We also present numerical tests in general channels to show the merits of the scheme.

Abstract Image

弱可压缩两层浅水水道流
在本文中,我们建立了一个在一般水道中具有摩擦力的弱可压缩双层浅水流模型。所建立的模型是非守恒的,与不可压缩极限相反,我们的系统是严格双曲的。我们为本系统提供了广义的 Rankine-Hugoniot 条件,并定义了弱解。我们在附录中写出了具有恒定宽度的通道沿每个特征域的黎曼不变式。我们提出并实施了一种稳健的均衡路径保守半离散中央上风方案,以验证黎曼问题的精确解。我们还在一般通道中进行了数值测试,以显示该方案的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信