Long-time asymptotics of solution for the fifth-order modified KdV equation in the presence of discrete spectrum

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Nan Liu, Mingjuan Chen, Boling Guo
{"title":"Long-time asymptotics of solution for the fifth-order modified KdV equation in the presence of discrete spectrum","authors":"Nan Liu,&nbsp;Mingjuan Chen,&nbsp;Boling Guo","doi":"10.1111/sapm.12742","DOIUrl":null,"url":null,"abstract":"<p>We investigate the Cauchy problem of an integrable focusing fifth-order modified Korteweg–de Vries (KdV) equation, which contains the fifth-order dispersion and relevant higher order nonlinear terms. The long-time asymptotics of solution is established in the case of initial conditions that lie in some low regularity weighted Sobolev spaces and allow for the presence of discrete spectrum. Our method is based on a <span></span><math>\n <semantics>\n <mover>\n <mi>∂</mi>\n <mo>¯</mo>\n </mover>\n <annotation>$\\bar{\\partial }$</annotation>\n </semantics></math> generalization of the nonlinear steepest descent method of Deift and Zhou. We show that the solution decomposes in the long time into three main regions: (i) an expanding oscillatory region where solitons and breathers travel with positive velocities, the leading order term has the form of a multisoliton/breather and soliton/breather–radiation interactions; (ii) a Painlevé region, which does not have traveling solitons and breathers, the asymptotics can be characterized with the solution of a fourth-order Painlevé II equation; (iii) a region of breathers traveling with negative velocities. Employing a global approximation via PDE techniques, the asymptotic behavior of solution is extended to lower regularity spaces with weights.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the Cauchy problem of an integrable focusing fifth-order modified Korteweg–de Vries (KdV) equation, which contains the fifth-order dispersion and relevant higher order nonlinear terms. The long-time asymptotics of solution is established in the case of initial conditions that lie in some low regularity weighted Sobolev spaces and allow for the presence of discrete spectrum. Our method is based on a ¯ $\bar{\partial }$ generalization of the nonlinear steepest descent method of Deift and Zhou. We show that the solution decomposes in the long time into three main regions: (i) an expanding oscillatory region where solitons and breathers travel with positive velocities, the leading order term has the form of a multisoliton/breather and soliton/breather–radiation interactions; (ii) a Painlevé region, which does not have traveling solitons and breathers, the asymptotics can be characterized with the solution of a fourth-order Painlevé II equation; (iii) a region of breathers traveling with negative velocities. Employing a global approximation via PDE techniques, the asymptotic behavior of solution is extended to lower regularity spaces with weights.

存在离散谱的五阶修正 KdV 方程求解的长时渐近线
我们研究了可积分聚焦五阶修正 Korteweg-de Vries (KdV) 方程的 Cauchy 问题,该方程包含五阶分散和相关的高阶非线性项。在初始条件位于某些低正则性加权索波列夫空间并允许存在离散谱的情况下,建立了解的长时渐近线。我们的方法基于对 Deift 和 Zhou 的非线性最陡下降法的推广。我们的研究表明,解在长时间内分解为三个主要区域:(i) 膨胀振荡区域,其中孤子和呼吸子以正速度行进,前序项具有多孤子/呼吸子和孤子/呼吸子-辐射相互作用的形式;(ii) 潘列韦区域,该区域不存在行进的孤子和呼吸子,其渐近线可以用四阶潘列韦 II 方程的解来描述;(iii) 以负速度行进的呼吸子区域。通过 PDE 技术的全局近似,解的渐近行为被扩展到带权重的低正则空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信