Hilali conjecture and complex algebraic varieties

Shoji Yokura
{"title":"Hilali conjecture and complex algebraic varieties","authors":"Shoji Yokura","doi":"arxiv-2407.06548","DOIUrl":null,"url":null,"abstract":"A simply connected topological space is called \\emph{rationally elliptic} if\nthe rank of its total homotopy group and its total (co)homology group are both\nfinite. A well-known Hilali conjecture claims that for a rationally elliptic\nspace its homotopy rank \\emph{does not exceed} its (co)homology rank. In this\npaper, after recalling some well-known fundamental properties of a rationally\nelliptic space and giving some important examples of rationally elliptic spaces\nand rationally elliptic singular complex algebraic varieties for which the\nHilali conjecture holds, we give some revised formulas and some conjectures. We\nalso discuss some topics such as mixd Hodge polynomials defined via mixed Hodge\nstructures on cohomology group and the dual of the homotopy group, related to\nthe ``Hilali conjecture \\emph{modulo product}\", which is an inequality between\nthe usual homological Poincar\\'e polynomial and the homotopical Poincar\\'e\npolynomial.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A simply connected topological space is called \emph{rationally elliptic} if the rank of its total homotopy group and its total (co)homology group are both finite. A well-known Hilali conjecture claims that for a rationally elliptic space its homotopy rank \emph{does not exceed} its (co)homology rank. In this paper, after recalling some well-known fundamental properties of a rationally elliptic space and giving some important examples of rationally elliptic spaces and rationally elliptic singular complex algebraic varieties for which the Hilali conjecture holds, we give some revised formulas and some conjectures. We also discuss some topics such as mixd Hodge polynomials defined via mixed Hodge structures on cohomology group and the dual of the homotopy group, related to the ``Hilali conjecture \emph{modulo product}", which is an inequality between the usual homological Poincar\'e polynomial and the homotopical Poincar\'e polynomial.
希拉里猜想与复代数品种
如果一个简单连接的拓扑空间的总同调群和总(共)同调群的秩都是无限的,那么这个空间就被称为(emph{理性椭圆空间}。一个著名的希拉里猜想声称,对于一个理性椭圆空间,它的(同)同调秩(homotopy rank)\emph{不会超过}它的(共)同调秩。在本文中,我们回顾了有理椭圆空间的一些著名的基本性质,举出了一些有理椭圆空间和有理椭圆奇异复代数变种的重要例子,这些例子都是希拉里猜想成立的,之后我们给出了一些修正公式和一些猜想。我们还讨论了一些主题,如通过同调群上的混合霍奇结构定义的混合霍奇多项式和同调群的对偶,以及与 "希拉里猜想(emph{modulo product})"相关的 "希拉里猜想(emph{modulo product})",即通常的同调泊因卡多项式和同调泊因卡外积多项式之间的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信