Effectiveness of nonlinear kernel with memory for a functionally graded solid with size dependency

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Abhik Sur
{"title":"Effectiveness of nonlinear kernel with memory for a functionally graded solid with size dependency","authors":"Abhik Sur","doi":"10.1007/s11043-024-09727-y","DOIUrl":null,"url":null,"abstract":"<div><p>Structures made of graded composites play an important role in various industrial fields, such as aerospace and biomechanics. By incorporating nonlocal stress theory the internal length scale parameter of the nonlocal model provides detailed information on long-range forces of atoms or molecules. This paper investigates the size-dependent modeling of a functionally graded unbounded medium influenced by a heat source and an induced magnetic field on the bounding plane. The heat transport equation is governed by a unified formulation that integrates both the three-phase-lag model and Moore–Gibson–Thompson theory of generalized thermoelasticity, incorporating a memory-dependent derivative with nonlinear and linear kernels. Using nonlocal stress theory, the constitutive equations are addressed. The basic equations are simplified in the transformed domain through the Laplace and Fourier integral transforms. To obtain solutions in the real space-time domain, the Fourier transforms are analytically inverted using residue calculus, with poles of the integrand numerically determined in the complex domain via Laguerre’s method. Subsequently, the numerical inversion of the Laplace transform is performed using a method based on Fourier series expansion. The computational results and corresponding graphical representations reveal significant effects of parameters such as the nonlocality parameter, time-delay parameter, and the influence of the magnetic field. Furthermore, the impact of different kernel functions is examined, demonstrating the superiority of nonlinear kernels over linear kernels within this new theoretical framework.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09727-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Structures made of graded composites play an important role in various industrial fields, such as aerospace and biomechanics. By incorporating nonlocal stress theory the internal length scale parameter of the nonlocal model provides detailed information on long-range forces of atoms or molecules. This paper investigates the size-dependent modeling of a functionally graded unbounded medium influenced by a heat source and an induced magnetic field on the bounding plane. The heat transport equation is governed by a unified formulation that integrates both the three-phase-lag model and Moore–Gibson–Thompson theory of generalized thermoelasticity, incorporating a memory-dependent derivative with nonlinear and linear kernels. Using nonlocal stress theory, the constitutive equations are addressed. The basic equations are simplified in the transformed domain through the Laplace and Fourier integral transforms. To obtain solutions in the real space-time domain, the Fourier transforms are analytically inverted using residue calculus, with poles of the integrand numerically determined in the complex domain via Laguerre’s method. Subsequently, the numerical inversion of the Laplace transform is performed using a method based on Fourier series expansion. The computational results and corresponding graphical representations reveal significant effects of parameters such as the nonlocality parameter, time-delay parameter, and the influence of the magnetic field. Furthermore, the impact of different kernel functions is examined, demonstrating the superiority of nonlinear kernels over linear kernels within this new theoretical framework.

Abstract Image

带记忆的非线性内核对具有尺寸依赖性的功能分级固体的有效性
由分级复合材料制成的结构在航空航天和生物力学等多个工业领域发挥着重要作用。通过结合非局部应力理论,非局部模型的内部长度尺度参数提供了原子或分子长程力的详细信息。本文研究了受热源和边界平面上的诱导磁场影响的功能分级无界介质的尺寸依赖性建模。热传输方程由一个统一的公式控制,该公式综合了三相滞后模型和广义热弹性的摩尔-吉布森-汤普森理论,并结合了非线性和线性核的记忆导数。利用非局部应力理论,对构成方程进行了处理。通过拉普拉斯和傅里叶积分变换,基本方程在变换域中得到简化。为了获得真实时空域中的解,傅立叶变换使用残差微积分进行分析反演,并通过拉盖尔法在复数域中数值确定积分的极点。随后,利用基于傅里叶级数展开的方法对拉普拉斯变换进行数值反演。计算结果和相应的图形显示了非位置参数、时间延迟参数和磁场影响等参数的显著影响。此外,还研究了不同核函数的影响,表明在这一新的理论框架内,非线性核比线性核更优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信