The 𝐿𝑝 restriction bounds for Neumann data on surface

IF 1 3区 数学 Q1 MATHEMATICS
Xianchao Wu
{"title":"The 𝐿𝑝 restriction bounds for Neumann data on surface","authors":"Xianchao Wu","doi":"10.1515/forum-2024-0237","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>λ</m:mi> </m:msub> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0237_ineq_0001.png\"/> <jats:tex-math>\\{u_{\\lambda}\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a sequence of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0237_ineq_0002.png\"/> <jats:tex-math>L^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-normalized Laplacian eigenfunctions on a compact two-dimensional smooth Riemanniann manifold <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0237_ineq_0003.png\"/> <jats:tex-math>(M,g)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We seek to get an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0237_ineq_0004.png\"/> <jats:tex-math>L^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> restriction bound of the Neumann data <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mrow> <m:msup> <m:mi>λ</m:mi> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo lspace=\"0em\">⁢</m:mo> <m:mrow> <m:msub> <m:mo rspace=\"0em\">∂</m:mo> <m:mi>ν</m:mi> </m:msub> <m:msub> <m:mi>u</m:mi> <m:mi>λ</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>γ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0237_ineq_0005.png\"/> <jats:tex-math>\\lambda^{-1}\\partial_{\\nu}u_{\\lambda}|_{\\gamma}</jats:tex-math> </jats:alternatives> </jats:inline-formula> along a unit geodesic 𝛾. Using the 𝑇-<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>T</m:mi> <m:mo>∗</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0237_ineq_0006.png\"/> <jats:tex-math>T^{*}</jats:tex-math> </jats:alternatives> </jats:inline-formula> argument, one can transfer the problem to an estimate of the norm of a Fourier integral operator and show that such bound is <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>O</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>λ</m:mi> <m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mi>p</m:mi> </m:mfrac> </m:mrow> <m:mo>+</m:mo> <m:mfrac> <m:mn>3</m:mn> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0237_ineq_0007.png\"/> <jats:tex-math>O(\\lambda^{-\\frac{1}{p}+\\frac{3}{2}})</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The stationary phase theorem plays the crucial role in our proof. Moreover, this upper bound is shown to be optimal.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"24 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2024-0237","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let { u λ } \{u_{\lambda}\} be a sequence of L 2 L^{2} -normalized Laplacian eigenfunctions on a compact two-dimensional smooth Riemanniann manifold ( M , g ) (M,g) . We seek to get an L p L^{p} restriction bound of the Neumann data λ 1 ν u λ | γ \lambda^{-1}\partial_{\nu}u_{\lambda}|_{\gamma} along a unit geodesic 𝛾. Using the 𝑇- T T^{*} argument, one can transfer the problem to an estimate of the norm of a Fourier integral operator and show that such bound is O ( λ 1 p + 3 2 ) O(\lambda^{-\frac{1}{p}+\frac{3}{2}}) . The stationary phase theorem plays the crucial role in our proof. Moreover, this upper bound is shown to be optimal.
表面新曼数据的 "𝐿𝑝 "限制边界
让 { u λ } \{u_\{lambda}\} 是 L 2 L^{2} 上的归一化拉普拉奇特征函数序列。 -紧凑二维光滑黎曼流形 ( M , g ) (M,g) 上的归一化拉普拉奇特征函数序列。我们试图得到沿单位大地线 𝛾 的诺伊曼数据 λ - 1 ∂ ν u λ | γ \lambda^{-1}\partial_\{nu}u_{\lambda}|_{\gamma} 的 L p L^{p} 限制约束。利用 𝑇- T∗ T^{*} 论证,我们可以把问题转移到对傅里叶积分算子规范的估计上,并证明这种约束是 O ( λ - 1 p + 3 2 ) O(\lambda^{-\frac{1}{p}+\frac{3}{2}}) 。静止阶段定理在我们的证明中起着至关重要的作用。此外,我们还证明了这一上限是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信