Design of interconnected graphene loaded thermoplastic elastomeric blend composite films for minimizing electromagnetic radiation and efficient heat management
Suman Kumar Ghosh, Sangit Paul, Trisita Ghosh, Narayan Ch. Das
{"title":"Design of interconnected graphene loaded thermoplastic elastomeric blend composite films for minimizing electromagnetic radiation and efficient heat management","authors":"Suman Kumar Ghosh, Sangit Paul, Trisita Ghosh, Narayan Ch. Das","doi":"10.1002/pat.6510","DOIUrl":null,"url":null,"abstract":"In this work, electrically conductive thermoplastic elastomeric blend composite films based on polystyrene (PS)/ethylene‐co‐methyl acrylate (EMA) filled with functionalized graphene were developed via the solution mixing technique. Morphological analysis revealed that selective localization of amine‐functionalized reduced graphene oxide (G‐ODA) sheets in the EMA phase of co‐continuous binary blend formed a well‐connected dense conductive pathway by graphene sheets ultimately facilitating the double percolation phenomenon. The electrical percolation threshold was achieved at ~2 wt% of G‐ODA loading which was much lower than that for both single polymer composites. An electrical conductivity of 0.9 S/cm was obtained for blend composite film with 10 wt% of graphene concentration whereas for the same filler loading, PS and EMA composites exhibited electrical conductivity of 1.9 × 10<jats:sup>−1</jats:sup> and 2.3 × 10<jats:sup>−1</jats:sup> S/cm, respectively. The obtained thermal conductivity of the blend composite with 10 wt% of G‐ODA loading was 0.95 W/m K with 400% enhancement compared to the neat blend system. The same composite exhibited increased real and imaginary permittivity of 92 and 83, respectively. The electrical percolation threshold is well‐correlated with the percolation concentration found from storage modulus and thermal conductivity data. The fabricated PS/EMA blend composite film exhibited absorption‐dominant electromagnetic interference SE of −25 and − 35 dB in X‐band frequency (8.2–12.4 GHz) for 10 wt% of graphene loading with a sample thickness of 0.5 and 1 mm, respectively.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"6 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6510","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, electrically conductive thermoplastic elastomeric blend composite films based on polystyrene (PS)/ethylene‐co‐methyl acrylate (EMA) filled with functionalized graphene were developed via the solution mixing technique. Morphological analysis revealed that selective localization of amine‐functionalized reduced graphene oxide (G‐ODA) sheets in the EMA phase of co‐continuous binary blend formed a well‐connected dense conductive pathway by graphene sheets ultimately facilitating the double percolation phenomenon. The electrical percolation threshold was achieved at ~2 wt% of G‐ODA loading which was much lower than that for both single polymer composites. An electrical conductivity of 0.9 S/cm was obtained for blend composite film with 10 wt% of graphene concentration whereas for the same filler loading, PS and EMA composites exhibited electrical conductivity of 1.9 × 10−1 and 2.3 × 10−1 S/cm, respectively. The obtained thermal conductivity of the blend composite with 10 wt% of G‐ODA loading was 0.95 W/m K with 400% enhancement compared to the neat blend system. The same composite exhibited increased real and imaginary permittivity of 92 and 83, respectively. The electrical percolation threshold is well‐correlated with the percolation concentration found from storage modulus and thermal conductivity data. The fabricated PS/EMA blend composite film exhibited absorption‐dominant electromagnetic interference SE of −25 and − 35 dB in X‐band frequency (8.2–12.4 GHz) for 10 wt% of graphene loading with a sample thickness of 0.5 and 1 mm, respectively.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.