{"title":"XK-III: A Spherical Robot with Redundant Degrees of Freedom","authors":"Rui Lin, Jianwen Huo, Xin Yang, Qiguan Wang, Ruilin Yang, Jinfei Xu","doi":"10.1007/s10846-024-02121-3","DOIUrl":null,"url":null,"abstract":"<p>The spherical robot XK-III, designed with redundant degrees of freedom, addresses the limitations of existing pendulum spherical robot structures by enhancing mobility and environmental adaptability. A nonlinear dynamic model is developed for XK-III’s new drive structure, along with a nonlinear disturbance observer (NDOB) to mitigate perturbations. Additionally, a Fuzzy PID controller (FPID) is implemented to further enhance XK-III’s environmental adaptability. Experimental results confirm the effectiveness of the new design, showing that XK-III equipped with FPID and NDOB outperforms traditional control systems in terms of anti-disturbance capabilities. This research provides valuable insights for the use of spherical robots in complex environments.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"110 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02121-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The spherical robot XK-III, designed with redundant degrees of freedom, addresses the limitations of existing pendulum spherical robot structures by enhancing mobility and environmental adaptability. A nonlinear dynamic model is developed for XK-III’s new drive structure, along with a nonlinear disturbance observer (NDOB) to mitigate perturbations. Additionally, a Fuzzy PID controller (FPID) is implemented to further enhance XK-III’s environmental adaptability. Experimental results confirm the effectiveness of the new design, showing that XK-III equipped with FPID and NDOB outperforms traditional control systems in terms of anti-disturbance capabilities. This research provides valuable insights for the use of spherical robots in complex environments.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).