High Performance Flexible Supercapacitor Based on Single Precursor Derived NiFe2O4 Spinel with Tailored Cationic Distribution and Oxygen Vacancies in Acidic Medium
IF 6.5 3区 材料科学Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
{"title":"High Performance Flexible Supercapacitor Based on Single Precursor Derived NiFe2O4 Spinel with Tailored Cationic Distribution and Oxygen Vacancies in Acidic Medium","authors":"Ajay, Vaishali Tanwar, Aditi Ashok Gujare, Pravin Popinand Ingole","doi":"10.1002/adsu.202400244","DOIUrl":null,"url":null,"abstract":"<p>Spinel metal oxides are extensively studied for supercapacitors (SCs) in alkaline electrolytes, where charge storage capacity is limited by surface site availability due to surface reconstruction forming metal hydroxides/oxyhydroxides. The use of an acidic medium, which can boost the charge storage capacity of spinel oxides offering an additional channel of intercalation-deintercalation of protons, is underexplored. Moreover, the impact of chemical compositions and the cationic distributions is crucial on the electrocatalysis performance of spinel oxides, however, such a correlation is first time reported for charge storage properties of spinel ferrite NiFe<sub>2</sub>O<sub>4</sub> nanoparticles (NFO NPs). Besides, a low-cost and scalable synthesis of NFO NPs involving the thermal decomposition of Ni-Fe glycolate, followed by controlled air-calcination is reported. Thus crafted NFO NPs-based device shows impressive specific capacitance (2112 F g<sup>−1</sup> at 10 A g<sup>−1</sup>) in half-cell configuration. A flexible all-solid-state asymmetric device (full-cell) configuration depicts impressive energy density (20.7 Wh kg<sup>−1</sup>), power density (4000 W kg<sup>−1</sup>), gravimetric capacitance (140 F g<sup>−1</sup> at 2 A g<sup>−1</sup>), and retention of its performance (≈75% after 10,000 charging/discharging cycles). The results depict a new insight toward the tuning of electronic and charge storage properties in NFO, which otherwise are predominately attributed to only the crystallite size and morphological effects.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 11","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400244","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spinel metal oxides are extensively studied for supercapacitors (SCs) in alkaline electrolytes, where charge storage capacity is limited by surface site availability due to surface reconstruction forming metal hydroxides/oxyhydroxides. The use of an acidic medium, which can boost the charge storage capacity of spinel oxides offering an additional channel of intercalation-deintercalation of protons, is underexplored. Moreover, the impact of chemical compositions and the cationic distributions is crucial on the electrocatalysis performance of spinel oxides, however, such a correlation is first time reported for charge storage properties of spinel ferrite NiFe2O4 nanoparticles (NFO NPs). Besides, a low-cost and scalable synthesis of NFO NPs involving the thermal decomposition of Ni-Fe glycolate, followed by controlled air-calcination is reported. Thus crafted NFO NPs-based device shows impressive specific capacitance (2112 F g−1 at 10 A g−1) in half-cell configuration. A flexible all-solid-state asymmetric device (full-cell) configuration depicts impressive energy density (20.7 Wh kg−1), power density (4000 W kg−1), gravimetric capacitance (140 F g−1 at 2 A g−1), and retention of its performance (≈75% after 10,000 charging/discharging cycles). The results depict a new insight toward the tuning of electronic and charge storage properties in NFO, which otherwise are predominately attributed to only the crystallite size and morphological effects.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.