Maree McGregor, John G. Spray, Christopher R. M. McFarlane
{"title":"Provenance constraints on the Late Triassic ejecta layer from Churchwood Quarry, SW England: An impactite suite from Manicouagan","authors":"Maree McGregor, John G. Spray, Christopher R. M. McFarlane","doi":"10.1111/maps.14172","DOIUrl":null,"url":null,"abstract":"<p>In situ LA-ICP-MS/MS U-Pb and Rb-Sr geochronology combined with geochemical analysis and electron microscopy have been performed on ejecta components sampled from the Mid-to-Late Triassic Mercia Mudstone Group at Churchwood Quarry, SW England. The layer comprises altered impact spherules, melt-rich and fragment-rich accreted grain clusters (AGCs), along with shocked mineral phases. Late Triassic ages are obtained: a U-Pb age of 219 ± 72 Ma from variably shock-metamorphosed apatite and a Rb-Sr age of 213 ± 31 Ma from melt-rich AGCs. A post-depositional U-Pb age of 200 ± 7.5 Ma obtained from the carbonate host matrix correlates with an early Jurassic dolomitization event associated with regional marine transgression. Several links to the Manicouagan impact structure, Canada, are identified that complement previous provenance studies: (1) rare earth element compositions of impact spherules and melt-rich AGCs match those of the Manicouagan impact melt sheet; (2) the preservation of Archean and Paleo- to Neoproterozoic target rock U-Pb ages in zircon and apatite match those recorded within Manicouagan basement lithologies; and (3) impact spherules and melt-rich AGCs record initial <sup>87</sup>Sr/<sup>86</sup>Sr compositions that overlap with those of the Manicouagan impact melt sheet and the target rocks involved in their generation.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 7","pages":"1632-1657"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14172","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In situ LA-ICP-MS/MS U-Pb and Rb-Sr geochronology combined with geochemical analysis and electron microscopy have been performed on ejecta components sampled from the Mid-to-Late Triassic Mercia Mudstone Group at Churchwood Quarry, SW England. The layer comprises altered impact spherules, melt-rich and fragment-rich accreted grain clusters (AGCs), along with shocked mineral phases. Late Triassic ages are obtained: a U-Pb age of 219 ± 72 Ma from variably shock-metamorphosed apatite and a Rb-Sr age of 213 ± 31 Ma from melt-rich AGCs. A post-depositional U-Pb age of 200 ± 7.5 Ma obtained from the carbonate host matrix correlates with an early Jurassic dolomitization event associated with regional marine transgression. Several links to the Manicouagan impact structure, Canada, are identified that complement previous provenance studies: (1) rare earth element compositions of impact spherules and melt-rich AGCs match those of the Manicouagan impact melt sheet; (2) the preservation of Archean and Paleo- to Neoproterozoic target rock U-Pb ages in zircon and apatite match those recorded within Manicouagan basement lithologies; and (3) impact spherules and melt-rich AGCs record initial 87Sr/86Sr compositions that overlap with those of the Manicouagan impact melt sheet and the target rocks involved in their generation.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.