Ward-Specific Probabilistic Patterns in Temporal Dynamics of Nursing Demand in Japanese Large University Hospital: Implication for Forecasting and Resource Allocation
{"title":"Ward-Specific Probabilistic Patterns in Temporal Dynamics of Nursing Demand in Japanese Large University Hospital: Implication for Forecasting and Resource Allocation","authors":"Rie Tajika, Yoshiaki Inoue, Keisuke Nakashima, Takako Yoshimi, Nobue Arimoto, Haruna Fukushige, Yoko Taniura, Tomoyuki Iwasaki, Atsue Ishii","doi":"10.1155/2024/2554273","DOIUrl":null,"url":null,"abstract":"<div>\n <p>As global populations age, a looming nursing shortage is anticipated to become a critical issue. Charge nurses have the responsibility of optimally allocating nursing resources to ensure the quality of patient care during a shift. Therefore, an accurate estimate of nursing demand is crucial. However, the ability to forecast future nursing demand remains underdeveloped, mainly because the nature of nursing demand is highly individualized and does not follow a definitive pattern. In practice, the nursing demand is often perceived as unpredictable, leading to an ad hoc approach to staffing. The primary objective of our study is to demonstrate that longitudinal data analysis can reveal strong statistical regularities in the temporal dynamics of nursing demand. This approach not only provides new possibilities for efficient resource allocation but also paves the way for data-driven prediction of nursing demand. Our study uses Sankey diagrams to visualize the temporal dynamics of nursing demand within each ward for each fiscal year, representing these dynamics as an overlay of trajectories from multiple individual patients. Consequently, our study reveals ward-specific statistical regularities in the temporal dynamics of nursing demand. In one ward, approximately 25% of patients experienced an increase in nursing demand from 1 to between 6 and 9 points from the second to the third day of hospitalization, while in another, only 0.1% showed such an increase. These findings suggest that patients admitted to the wards tend to exhibit a certain probabilistic change in nursing demand. This study can predict probabilistically the temporal variation of nursing demand among patients in the coming years by analyzing data on the temporal changes in nursing demand over the past years. Our findings are expected to significantly influence the forecasting of nursing demand and the estimation of nursing resources, leading to data-driven and more efficient nursing management.</p>\n </div>","PeriodicalId":49297,"journal":{"name":"Journal of Nursing Management","volume":"2024 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2554273","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nursing Management","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2554273","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
As global populations age, a looming nursing shortage is anticipated to become a critical issue. Charge nurses have the responsibility of optimally allocating nursing resources to ensure the quality of patient care during a shift. Therefore, an accurate estimate of nursing demand is crucial. However, the ability to forecast future nursing demand remains underdeveloped, mainly because the nature of nursing demand is highly individualized and does not follow a definitive pattern. In practice, the nursing demand is often perceived as unpredictable, leading to an ad hoc approach to staffing. The primary objective of our study is to demonstrate that longitudinal data analysis can reveal strong statistical regularities in the temporal dynamics of nursing demand. This approach not only provides new possibilities for efficient resource allocation but also paves the way for data-driven prediction of nursing demand. Our study uses Sankey diagrams to visualize the temporal dynamics of nursing demand within each ward for each fiscal year, representing these dynamics as an overlay of trajectories from multiple individual patients. Consequently, our study reveals ward-specific statistical regularities in the temporal dynamics of nursing demand. In one ward, approximately 25% of patients experienced an increase in nursing demand from 1 to between 6 and 9 points from the second to the third day of hospitalization, while in another, only 0.1% showed such an increase. These findings suggest that patients admitted to the wards tend to exhibit a certain probabilistic change in nursing demand. This study can predict probabilistically the temporal variation of nursing demand among patients in the coming years by analyzing data on the temporal changes in nursing demand over the past years. Our findings are expected to significantly influence the forecasting of nursing demand and the estimation of nursing resources, leading to data-driven and more efficient nursing management.
期刊介绍:
The Journal of Nursing Management is an international forum which informs and advances the discipline of nursing management and leadership. The Journal encourages scholarly debate and critical analysis resulting in a rich source of evidence which underpins and illuminates the practice of management, innovation and leadership in nursing and health care. It publishes current issues and developments in practice in the form of research papers, in-depth commentaries and analyses.
The complex and rapidly changing nature of global health care is constantly generating new challenges and questions. The Journal of Nursing Management welcomes papers from researchers, academics, practitioners, managers, and policy makers from a range of countries and backgrounds which examine these issues and contribute to the body of knowledge in international nursing management and leadership worldwide.
The Journal of Nursing Management aims to:
-Inform practitioners and researchers in nursing management and leadership
-Explore and debate current issues in nursing management and leadership
-Assess the evidence for current practice
-Develop best practice in nursing management and leadership
-Examine the impact of policy developments
-Address issues in governance, quality and safety