{"title":"A novel approach to detect glucose concentration using active cavity Whispering Gallery Mode sensor","authors":"El Metouy Et-Tijani, Luiz Poffo, Christelle Velly, Patrice Féron, Laetitia Abel-Tiberini","doi":"10.1002/jnm.3267","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new approach to particle detection using an active microresonator operating in the transparency regime. Simulations demonstrate that when particles interact with the microresonator surface, they induce optical losses. To compensate for these losses, the optical gain is amplified to restore the transparency regime. Simulation results show a linear relationship between nanoparticle concentration and the pump power required to compensate for optical losses. By the use of microresonator with a very high quality factor, this approach offers an accurate and sensitive method for detecting nanoparticles, without the need for complex equipment.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"37 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnm.3267","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3267","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a new approach to particle detection using an active microresonator operating in the transparency regime. Simulations demonstrate that when particles interact with the microresonator surface, they induce optical losses. To compensate for these losses, the optical gain is amplified to restore the transparency regime. Simulation results show a linear relationship between nanoparticle concentration and the pump power required to compensate for optical losses. By the use of microresonator with a very high quality factor, this approach offers an accurate and sensitive method for detecting nanoparticles, without the need for complex equipment.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.