{"title":"Small signal analysis and dynamic modeling of a battery energy storage system in a DC microgrid","authors":"Rongrui Lin, Sungwoo Bae","doi":"10.1016/j.ijepes.2024.110109","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a comprehensive small signal analysis of two types of battery energy storage systems (BESSs), including a voltage-controlled BESS (V-BESS) and a current-controlled BESS (C-BESS). This study also introduces dynamic models for integrating these two BESS configurations within a DC microgrid context. Through small signal analysis and participation factor analysis, this study investigates the interplay between the BESS and the DC microgrid and the internal interactions within the BESS. Subsequently, pivotal modeling parameters are discerned, and their impacts on system dynamics due to variations are unveiled through a sensitivity analysis. These results were verified through real-time software-in-the-loop simulations using an OPAL-RT 5707XH. Furthermore, this paper proposes dynamic models for both V-BESS and C-BESS integrated with a DC microgrid that can capture the dominant behavior of BESSs in a DC microgrid with relatively low computation demands. Potential applications of this study not only include providing a reference for modeling BESSs in a DC microgrid but also providing a guideline during the design and operation stages of a BESS in a DC microgrid. Finally, due to their modularity and scalability, the proposed dynamic models can be easily applied to the design and testing of BESS controllers.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524003302/pdfft?md5=9a76df21a4bc096d90bbecad906e37a7&pid=1-s2.0-S0142061524003302-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524003302","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a comprehensive small signal analysis of two types of battery energy storage systems (BESSs), including a voltage-controlled BESS (V-BESS) and a current-controlled BESS (C-BESS). This study also introduces dynamic models for integrating these two BESS configurations within a DC microgrid context. Through small signal analysis and participation factor analysis, this study investigates the interplay between the BESS and the DC microgrid and the internal interactions within the BESS. Subsequently, pivotal modeling parameters are discerned, and their impacts on system dynamics due to variations are unveiled through a sensitivity analysis. These results were verified through real-time software-in-the-loop simulations using an OPAL-RT 5707XH. Furthermore, this paper proposes dynamic models for both V-BESS and C-BESS integrated with a DC microgrid that can capture the dominant behavior of BESSs in a DC microgrid with relatively low computation demands. Potential applications of this study not only include providing a reference for modeling BESSs in a DC microgrid but also providing a guideline during the design and operation stages of a BESS in a DC microgrid. Finally, due to their modularity and scalability, the proposed dynamic models can be easily applied to the design and testing of BESS controllers.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.