Hary Kurniawan , Muhammad Akbar Andi Arief , Santosh Lohumi , Moon S. Kim , Insuck Baek , Byoung-Kwan Cho
{"title":"Dual imaging technique for a real-time inspection system of foreign object detection in fresh-cut vegetables","authors":"Hary Kurniawan , Muhammad Akbar Andi Arief , Santosh Lohumi , Moon S. Kim , Insuck Baek , Byoung-Kwan Cho","doi":"10.1016/j.crfs.2024.100802","DOIUrl":null,"url":null,"abstract":"<div><p>Fresh-cut vegetables are a food product susceptible to contamination by foreign materials (FMs). To detect a range of potential FMs in fresh-cut vegetables, a dual imaging technique (fluorescence and color imaging) with a simple and effective image processing algorithm in a user-friendly software interface was developed for a real-time inspection system. The inspection system consisted of feeding and sensing units, including two cameras positioned in parallel, illuminations (white LED and UV light), and a conveyor unit. A camera equipped with a long-pass filter was used to collect fluorescence images. Another camera collected color images of fresh-cut vegetables and FMs. The feeding unit fed FMs mixed with fresh-cut vegetables onto a conveyor belt. Two cameras synchronized programmatically in the software interface simultaneously collected fluorescence and color image samples based on the region of interest as they moved through the conveyor belt. Using simple image processing algorithms, FMs could be detected and depicted in two different image windows. The results demonstrated that the dual imaging technique can effectively detect potential FMs in two types of fresh-cut vegetables (cabbage and green onion), as indicated by the combined fluorescence and color imaging accuracy. The test results showed that the real-time inspection system could detect FMs measuring 0.5 mm in fresh-cut vegetables. The results showed that the combined detection accuracy of FMs in the cabbage (95.77%) sample was superior to that of green onion samples (87.89%). Therefore, the inspection system was more effective at detecting FMs in cabbage samples than in green onion samples.</p></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"9 ","pages":"Article 100802"},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266592712400128X/pdfft?md5=c88bb37ae59060d11851323cc973fa99&pid=1-s2.0-S266592712400128X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266592712400128X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fresh-cut vegetables are a food product susceptible to contamination by foreign materials (FMs). To detect a range of potential FMs in fresh-cut vegetables, a dual imaging technique (fluorescence and color imaging) with a simple and effective image processing algorithm in a user-friendly software interface was developed for a real-time inspection system. The inspection system consisted of feeding and sensing units, including two cameras positioned in parallel, illuminations (white LED and UV light), and a conveyor unit. A camera equipped with a long-pass filter was used to collect fluorescence images. Another camera collected color images of fresh-cut vegetables and FMs. The feeding unit fed FMs mixed with fresh-cut vegetables onto a conveyor belt. Two cameras synchronized programmatically in the software interface simultaneously collected fluorescence and color image samples based on the region of interest as they moved through the conveyor belt. Using simple image processing algorithms, FMs could be detected and depicted in two different image windows. The results demonstrated that the dual imaging technique can effectively detect potential FMs in two types of fresh-cut vegetables (cabbage and green onion), as indicated by the combined fluorescence and color imaging accuracy. The test results showed that the real-time inspection system could detect FMs measuring 0.5 mm in fresh-cut vegetables. The results showed that the combined detection accuracy of FMs in the cabbage (95.77%) sample was superior to that of green onion samples (87.89%). Therefore, the inspection system was more effective at detecting FMs in cabbage samples than in green onion samples.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.