Yansong Pei , Ketian Ye , Junbo Zhao , Yiyun Yao , Tong Su , Fei Ding
{"title":"Visibility-enhanced model-free deep reinforcement learning algorithm for voltage control in realistic distribution systems using smart inverters","authors":"Yansong Pei , Ketian Ye , Junbo Zhao , Yiyun Yao , Tong Su , Fei Ding","doi":"10.1016/j.apenergy.2024.123758","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing integration of distributed solar photovoltaic (PV) into distribution networks could result in adverse effects on grid operation. Traditional model-based control algorithms require accurate model information that is difficult to acquire and thus are challenging to implement in practice. This paper proposes a surrogate model-enabled grid visibility scheme to empower deep reinforcement learning (DRL) approach for distribution network voltage regulation using PV inverters with minimal system knowledge. In contrast to existing DRL methods, this paper presents and corroborates the adverse impact of missing load information on DRL performance and, based on this finding, proposes a surrogate model methodology to impute load information utilizing observable data. Additionally, a multi-fidelity neural network is utilized to construct the DRL training environment, chosen for its efficient data utilization and enhanced robustness to data uncertainty. The feasibility and effectiveness of the proposed algorithm are assessed by considering DRL testing across varying degrees of observable load information and diverse training environments on a realistic power system.</p></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924011413","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing integration of distributed solar photovoltaic (PV) into distribution networks could result in adverse effects on grid operation. Traditional model-based control algorithms require accurate model information that is difficult to acquire and thus are challenging to implement in practice. This paper proposes a surrogate model-enabled grid visibility scheme to empower deep reinforcement learning (DRL) approach for distribution network voltage regulation using PV inverters with minimal system knowledge. In contrast to existing DRL methods, this paper presents and corroborates the adverse impact of missing load information on DRL performance and, based on this finding, proposes a surrogate model methodology to impute load information utilizing observable data. Additionally, a multi-fidelity neural network is utilized to construct the DRL training environment, chosen for its efficient data utilization and enhanced robustness to data uncertainty. The feasibility and effectiveness of the proposed algorithm are assessed by considering DRL testing across varying degrees of observable load information and diverse training environments on a realistic power system.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.