Nakao Hayashi , Jesus A. Mendez-Navarro , Pavel I. Naumkin
{"title":"Large time asymptotics for the modified Korteweg–de Vries-Benjamin–Ono equation","authors":"Nakao Hayashi , Jesus A. Mendez-Navarro , Pavel I. Naumkin","doi":"10.1016/j.na.2024.113604","DOIUrl":null,"url":null,"abstract":"<div><p>We study the large time asymptotics of solutions to the Cauchy problem for the modified Korteweg–de Vries-Benjamin–Ono equation <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mfrac><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mi>H</mi><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>−</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></mfrac><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mi>u</mi><mo>=</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mfenced><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfenced><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><mi>R</mi><mi>,</mi><mi>u</mi><mfenced><mrow><mn>0</mn><mo>,</mo><mi>x</mi></mrow></mfenced><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mfenced><mrow><mi>x</mi></mrow></mfenced><mo>,</mo><mi>x</mi><mo>∈</mo><mi>R</mi><mi>,</mi></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math></span> <span><math><mrow><mi>H</mi><mi>ϕ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mrow></math></span>p.v.<span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>R</mi></mrow></msub><mfrac><mrow><mi>ϕ</mi><mfenced><mrow><mi>y</mi></mrow></mfenced></mrow><mrow><mi>x</mi><mo>−</mo><mi>y</mi></mrow></mfrac><mi>d</mi><mi>y</mi></mrow></math></span> is the Hilbert transform. We develop the factorization technique to obtain the sharp time decay estimate for solutions and to prove the modified scattering.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001238","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the large time asymptotics of solutions to the Cauchy problem for the modified Korteweg–de Vries-Benjamin–Ono equation where p.v. is the Hilbert transform. We develop the factorization technique to obtain the sharp time decay estimate for solutions and to prove the modified scattering.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.