Andrés Baietto , Andrés Hirigoyen , Carolina Toranza , Franco Schinato , Maximiliano González , Rafael Navarro Cerrillo
{"title":"Carbon stock estimation in halophytic wooded savannas of Uruguay: An ecosystem approach","authors":"Andrés Baietto , Andrés Hirigoyen , Carolina Toranza , Franco Schinato , Maximiliano González , Rafael Navarro Cerrillo","doi":"10.1016/j.fecs.2024.100216","DOIUrl":null,"url":null,"abstract":"<div><p>Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory. The contribution of this biome to the soil organic carbon (SOC) and above-ground biomass (AGB) carbon (C) stock globally is significant. However, they are frequently subjected to land use changes, promoting increases in CO<sub>2</sub> emissions. In Uruguay, subtropical wooded savannas cover around 100,000 ha, of which approximately 28% is circumscribed to sodic soils (i.e., subtropical halophytic wooded savannas). Nevertheless, there is little background about the contribution of each ecosystem component to the C stock as well as site-specific allometric equations. The study was conducted in 5 ha of subtropical halophytic wooded savannas of the national protected area Esteros y Algarrobales del Río Uruguay. This work aimed to estimate the contribution of the main ecosystem components (e.g., soil, trees, shrubs, and herbaceous plants) to the C stock. Site-specific allometric equations for the most frequent tree species and shrub genus were fitted based on basal diameter (BD) and total height (H). The fitted equations accounted for between 77% and 98% of the aerial biomass variance of <em>Neltuma affinis</em> and <em>Vachellia caven</em>. For shrubs (<em>Baccharis</em> sp.), the adjusted equation accounted for 86% of total aerial biomass. C stock for the entire system was 116.71 ± 11.07 Mg⋅ha<sup>−1</sup>, of which 90.7% was allocated in the soil, 8.3% in the trees, 0.8% in the herbaceous plants, and 0.2% in the shrubs. These results highlight the importance of subtropical halophytic wooded savannas as C sinks and their relevance in the mitigation of global warming under a climate change scenario.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000526/pdfft?md5=5f9dec6fc953566ef624415ffb7503c3&pid=1-s2.0-S2197562024000526-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000526","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory. The contribution of this biome to the soil organic carbon (SOC) and above-ground biomass (AGB) carbon (C) stock globally is significant. However, they are frequently subjected to land use changes, promoting increases in CO2 emissions. In Uruguay, subtropical wooded savannas cover around 100,000 ha, of which approximately 28% is circumscribed to sodic soils (i.e., subtropical halophytic wooded savannas). Nevertheless, there is little background about the contribution of each ecosystem component to the C stock as well as site-specific allometric equations. The study was conducted in 5 ha of subtropical halophytic wooded savannas of the national protected area Esteros y Algarrobales del Río Uruguay. This work aimed to estimate the contribution of the main ecosystem components (e.g., soil, trees, shrubs, and herbaceous plants) to the C stock. Site-specific allometric equations for the most frequent tree species and shrub genus were fitted based on basal diameter (BD) and total height (H). The fitted equations accounted for between 77% and 98% of the aerial biomass variance of Neltuma affinis and Vachellia caven. For shrubs (Baccharis sp.), the adjusted equation accounted for 86% of total aerial biomass. C stock for the entire system was 116.71 ± 11.07 Mg⋅ha−1, of which 90.7% was allocated in the soil, 8.3% in the trees, 0.8% in the herbaceous plants, and 0.2% in the shrubs. These results highlight the importance of subtropical halophytic wooded savannas as C sinks and their relevance in the mitigation of global warming under a climate change scenario.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.