{"title":"On integrals of birth–death processes at random time","authors":"P. Vishwakarma, K.K. Kataria","doi":"10.1016/j.spl.2024.110204","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a time-changed path integral of the homogeneous birth–death process. Here, the time changes according to an inverse stable subordinator. It is shown that its joint distribution with the time-changed birth–death process is governed by a fractional partial differential equation. In a linear case, the explicit expressions for the Laplace transform of their joint generating function, means, variances and covariance are obtained. The limiting behavior of this integral process has been studied. Later, we consider the fractional integrals of linear birth–death processes and their time-changed versions. The mean values of these fractional integrals are obtained and analyzed. In a particular case, it is observed that the time-changed path integral of the linear birth–death process and the fractional integral of time-changed linear birth–death process have equal mean growth.</p></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"214 ","pages":"Article 110204"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001731","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a time-changed path integral of the homogeneous birth–death process. Here, the time changes according to an inverse stable subordinator. It is shown that its joint distribution with the time-changed birth–death process is governed by a fractional partial differential equation. In a linear case, the explicit expressions for the Laplace transform of their joint generating function, means, variances and covariance are obtained. The limiting behavior of this integral process has been studied. Later, we consider the fractional integrals of linear birth–death processes and their time-changed versions. The mean values of these fractional integrals are obtained and analyzed. In a particular case, it is observed that the time-changed path integral of the linear birth–death process and the fractional integral of time-changed linear birth–death process have equal mean growth.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.