Junjie Ding , Qianling Song , Lu Xia , Lujie Ruan , Min Zhang , Chaogang Ban , Jiazhi Meng , Jiangping Ma , Yajie Feng , Yang Wang , Xiaoping Tao , Danmei Yu , Ji-Yan Dai , Liyong Gan , Xiaoyuan Zhou
{"title":"Unconventional grain fragmentation creates high-density boundaries for efficient CO2-to-C2+ electro-conversion at ampere-level current density","authors":"Junjie Ding , Qianling Song , Lu Xia , Lujie Ruan , Min Zhang , Chaogang Ban , Jiazhi Meng , Jiangping Ma , Yajie Feng , Yang Wang , Xiaoping Tao , Danmei Yu , Ji-Yan Dai , Liyong Gan , Xiaoyuan Zhou","doi":"10.1016/j.nanoen.2024.109945","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to produce multi-carbon products (C<sub>2+</sub>) is one of the most sustainable manners to achieve net-zero carbon emissions. Among many approaches, enriching grain boundaries (GBs) in copper (Cu) catalysts has been demonstrated to enable enhancement for C<sub>2+</sub> production. However, it still lacks effective strategies to controllably synthesize abundant GBs, rendering efficient C<sub>2+</sub> production a persistent challenge, especially at ampere-level current density. Herein, we propose a novel strategy, which can achieve unconventional grain fragmentation during thermal annealing and thus create controllable GB densities. The catalyst with the utmost GB density exhibits a peak C<sub>2+</sub> faradaic efficiency of <em>ca.</em> 70.0 % in H-type cell and 68.2 % in flow cell; even more impressively, it delivers an ultra-high C<sub>2+</sub> current density of 0.768 A cm<sup>−2</sup>, outperforming most recently reported results. A combination of <em>in situ</em> spectroscopies and theoretical calculations reveal that the enrichment of GBs yields more active sites for a higher *CO coverage, leading to promotion of the *CO-*CO coupling process and ultimately high C<sub>2+</sub> production performance.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006943","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) to produce multi-carbon products (C2+) is one of the most sustainable manners to achieve net-zero carbon emissions. Among many approaches, enriching grain boundaries (GBs) in copper (Cu) catalysts has been demonstrated to enable enhancement for C2+ production. However, it still lacks effective strategies to controllably synthesize abundant GBs, rendering efficient C2+ production a persistent challenge, especially at ampere-level current density. Herein, we propose a novel strategy, which can achieve unconventional grain fragmentation during thermal annealing and thus create controllable GB densities. The catalyst with the utmost GB density exhibits a peak C2+ faradaic efficiency of ca. 70.0 % in H-type cell and 68.2 % in flow cell; even more impressively, it delivers an ultra-high C2+ current density of 0.768 A cm−2, outperforming most recently reported results. A combination of in situ spectroscopies and theoretical calculations reveal that the enrichment of GBs yields more active sites for a higher *CO coverage, leading to promotion of the *CO-*CO coupling process and ultimately high C2+ production performance.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.