A tactile sensing system capable of recognizing objects based on bioinspired self-sensing soft pneumatic actuator.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Meng Yu, Xiang Cheng, Shigang Peng, Liangyu Zhao, Pengfei Wang
{"title":"A tactile sensing system capable of recognizing objects based on bioinspired self-sensing soft pneumatic actuator.","authors":"Meng Yu, Xiang Cheng, Shigang Peng, Liangyu Zhao, Pengfei Wang","doi":"10.1088/1748-3190/ad61a8","DOIUrl":null,"url":null,"abstract":"<p><p>Tactile sensors play an important role when robots perform contact tasks, such as physical information collection, force or displacement control to avoid collision. For these manipulations, excessive contact may cause damage while poor contact cause information loss between the robotic end-effector and the objects. Inspired by skin structure and signal transmission method, this paper proposes a tactile sensing system based on the self-sensing soft pneumatic actuator (S-SPA) capable of providing tactile sensing capability for robots. Based on the adjustable height and compliance characteristics of the S-SPA, the contact process is safe and more tactile information can be collected. And to demonstrate the feasibility and advantage of this system, a robotic hand with S-SPAs could recognize different textures and stiffness of the objects by touching and pinching behaviours to collect physical information of the various objects under the positive work states of the S-SPA. The result shows the recognition accuracy of the fifteen texture plates reaches 99.4%, and the recognition accuracy of the four stiffness cuboids reaches 100%by training a KNN model. This safe and simple tactile sensing system with high recognition accuracies based on S-SPA shows great potential in robotic manipulations and is beneficial to applications in domestic and industrial fields.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad61a8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tactile sensors play an important role when robots perform contact tasks, such as physical information collection, force or displacement control to avoid collision. For these manipulations, excessive contact may cause damage while poor contact cause information loss between the robotic end-effector and the objects. Inspired by skin structure and signal transmission method, this paper proposes a tactile sensing system based on the self-sensing soft pneumatic actuator (S-SPA) capable of providing tactile sensing capability for robots. Based on the adjustable height and compliance characteristics of the S-SPA, the contact process is safe and more tactile information can be collected. And to demonstrate the feasibility and advantage of this system, a robotic hand with S-SPAs could recognize different textures and stiffness of the objects by touching and pinching behaviours to collect physical information of the various objects under the positive work states of the S-SPA. The result shows the recognition accuracy of the fifteen texture plates reaches 99.4%, and the recognition accuracy of the four stiffness cuboids reaches 100%by training a KNN model. This safe and simple tactile sensing system with high recognition accuracies based on S-SPA shows great potential in robotic manipulations and is beneficial to applications in domestic and industrial fields.

基于生物启发的自感应软气动致动器,能够识别物体的触觉传感系统。
在机器人执行物理信息收集、力或位移控制以避免碰撞等接触任务时,触觉传感器发挥着重要作用。在这些操作中,过度接触可能会造成损坏,而接触不良则会导致机器人末端执行器与物体之间的信息丢失。受皮肤结构和信号传输方法的启发,本文提出了一种基于自感应软气动执行器(S-SPA)的触觉传感系统,能够为机器人提供触觉传感功能。基于 S-SPA 的可调高度和顺应性特性,可以安全地进行接触并收集准确的触觉信息。为了证明该系统的可行性和优势,装有 S-SPA 的机械手可以在 S-SPA 的正工作状态下,通过触摸和捏合行为识别不同质地和硬度的物体,收集各种物体的物理信息。结果表明,通过训练 KNN 模型,15 块纹理板的识别准确率达到 99.4%,4 个硬度立方体的识别准确率达到 100%。这种基于 S-SPA 的安全、简单且识别准确率高的触觉传感系统在机器人操纵方面具有巨大潜力,有利于在家庭和工业领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信