Camille Frévent, Mohamed-Salem Ahmed, Sophie Dabo-Niang, Michaël Genin
{"title":"A Shared-Frailty Spatial Scan Statistic Model for Time-to-Event Data","authors":"Camille Frévent, Mohamed-Salem Ahmed, Sophie Dabo-Niang, Michaël Genin","doi":"10.1002/bimj.202300200","DOIUrl":null,"url":null,"abstract":"<p>Spatial scan statistics are well-known methods widely used to detect spatial clusters of events. Furthermore, several spatial scan statistics models have been applied to the spatial analysis of time-to-event data. However, these models do not take account of potential correlations between the observations of individuals within the same spatial unit or potential spatial dependence between spatial units. To overcome this problem, we have developed a scan statistic based on a Cox model with shared frailty and that takes account of the spatial dependence between spatial units. In simulation studies, we found that (i) conventional models of spatial scan statistics for time-to-event data fail to maintain the type I error in the presence of a correlation between the observations of individuals within the same spatial unit and (ii) our model performed well in the presence of such correlation and spatial dependence. We have applied our method to epidemiological data and the detection of spatial clusters of mortality in patients with end-stage renal disease in northern France.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300200","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300200","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial scan statistics are well-known methods widely used to detect spatial clusters of events. Furthermore, several spatial scan statistics models have been applied to the spatial analysis of time-to-event data. However, these models do not take account of potential correlations between the observations of individuals within the same spatial unit or potential spatial dependence between spatial units. To overcome this problem, we have developed a scan statistic based on a Cox model with shared frailty and that takes account of the spatial dependence between spatial units. In simulation studies, we found that (i) conventional models of spatial scan statistics for time-to-event data fail to maintain the type I error in the presence of a correlation between the observations of individuals within the same spatial unit and (ii) our model performed well in the presence of such correlation and spatial dependence. We have applied our method to epidemiological data and the detection of spatial clusters of mortality in patients with end-stage renal disease in northern France.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.