Deep demosaicking convolution neural network and quantum wavelet transform-based image denoising.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Anitha Mary Chinnaiyan, Boyed Wesley Alfred Sylam
{"title":"Deep demosaicking convolution neural network and quantum wavelet transform-based image denoising.","authors":"Anitha Mary Chinnaiyan, Boyed Wesley Alfred Sylam","doi":"10.1080/0954898X.2024.2358950","DOIUrl":null,"url":null,"abstract":"<p><p>Demosaicking is a popular scientific area that is being explored by a vast number of scientists. Current digital imaging technologies capture colour images with a single monochrome sensor. In addition, the colour images were captured using a sensor coupled with a Colour Filter Array (CFA). Furthermore, the demosaicking procedure is required to obtain a full-colour image. Image denoising and image demosaicking are the two important image restoration techniques, which have increased popularity in recent years. Finding a suitable strategy for multiple image restoration is critical for researchers. Hence, a deep learning (DL) based image denoising and image demosaicking is developed in this research. Moreover, the Autoregressive Circle Wave Optimization (ACWO) based Demosaicking Convolutional Neural Network (DMCNN) is designed for image demosaicking. The Quantum Wavelet Transform (QWT) is used in the image denoising process. Similarly, Quantum Wavelet Transform (QWT) is used to analyse the abrupt changes in the input image with noise. The transformed image is then subjected to a thresholding technique, which determines an appropriate threshold range. Once the threshold range has been determined, soft thresholding is applied to the resulting wavelet coefficients. After that, the extraction and reconstruction of the original image is carried out using the Inverse Quantum Wavelet Transform (IQWT). Finally, the fused image is created by combining the results of both processes using a weighted average. The denoised and demosaicked images are combined using the weighted average technique. Furthermore, the proposed QWT+DMCNN-ACWO model provided the ideal values of Peak signal-to-noise ratio (PSNR), Second derivative like measure of enhancement (SDME), Structural Similarity Index (SSIM), Figure of Merit (FOM) of 0.890, and computational time of 49.549 dB, 59.53 dB, 0.963, 0.890, and 0.571, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2358950","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Demosaicking is a popular scientific area that is being explored by a vast number of scientists. Current digital imaging technologies capture colour images with a single monochrome sensor. In addition, the colour images were captured using a sensor coupled with a Colour Filter Array (CFA). Furthermore, the demosaicking procedure is required to obtain a full-colour image. Image denoising and image demosaicking are the two important image restoration techniques, which have increased popularity in recent years. Finding a suitable strategy for multiple image restoration is critical for researchers. Hence, a deep learning (DL) based image denoising and image demosaicking is developed in this research. Moreover, the Autoregressive Circle Wave Optimization (ACWO) based Demosaicking Convolutional Neural Network (DMCNN) is designed for image demosaicking. The Quantum Wavelet Transform (QWT) is used in the image denoising process. Similarly, Quantum Wavelet Transform (QWT) is used to analyse the abrupt changes in the input image with noise. The transformed image is then subjected to a thresholding technique, which determines an appropriate threshold range. Once the threshold range has been determined, soft thresholding is applied to the resulting wavelet coefficients. After that, the extraction and reconstruction of the original image is carried out using the Inverse Quantum Wavelet Transform (IQWT). Finally, the fused image is created by combining the results of both processes using a weighted average. The denoised and demosaicked images are combined using the weighted average technique. Furthermore, the proposed QWT+DMCNN-ACWO model provided the ideal values of Peak signal-to-noise ratio (PSNR), Second derivative like measure of enhancement (SDME), Structural Similarity Index (SSIM), Figure of Merit (FOM) of 0.890, and computational time of 49.549 dB, 59.53 dB, 0.963, 0.890, and 0.571, respectively.

基于深度去马赛克卷积神经网络和量子小波变换的图像去噪。
去马赛克是一个热门科学领域,许多科学家都在对其进行探索。目前的数字成像技术使用单色传感器捕捉彩色图像。此外,彩色图像的捕捉还使用了一个与彩色滤光片阵列(CFA)耦合的传感器。此外,要获得全彩色图像,还需要进行去马赛克处理。图像去噪和图像去马赛克是近年来日益流行的两种重要图像复原技术。对于研究人员来说,找到合适的多重图像复原策略至关重要。因此,本研究开发了一种基于深度学习(DL)的图像去噪和图像去马赛克技术。此外,还为图像去马赛克设计了基于自回归圆波优化(ACWO)的去马赛克卷积神经网络(DMCNN)。量子小波变换(QWT)被用于图像去噪过程。同样,量子小波变换 (QWT) 也用于分析输入图像中的突变噪声。然后,对变换后的图像进行阈值处理,以确定适当的阈值范围。一旦确定了阈值范围,就会对得到的小波系数进行软阈值处理。之后,使用反量子小波变换 (IQWT) 对原始图像进行提取和重建。最后,使用加权平均法将两个过程的结果合并,生成融合图像。使用加权平均技术将去噪和去马赛克图像合并。此外,所提出的 QWT+DMCNN-ACWO 模型在峰值信噪比 (PSNR)、二阶导数增强度量 (SDME)、结构相似性指数 (SSIM)、功绩值 (FOM) 和计算时间方面分别达到了 49.549 dB、59.53 dB、0.963、0.890 和 0.571 的理想值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信