Radiation Chemistry and Radiation Research: A History from the Beginning to the Platinum Edition.

IF 2.5 3区 医学 Q2 BIOLOGY
John D Zimbrick
{"title":"Radiation Chemistry and Radiation Research: A History from the Beginning to the Platinum Edition.","authors":"John D Zimbrick","doi":"10.1667/RADE-24-00053.1","DOIUrl":null,"url":null,"abstract":"<p><p>At the dawn of the 20th Century, the underlying chemistry that produced the observed effects of ionizing radiation, e.g., X rays and Radium salts, on aqueous solutions was either unknown or restricted to products found postirradiation. For example, the Curies noted that sealed aqueous solutions of Radium inexplicably decomposed over time, even when kept in the dark. By 1928 there were numerous papers describing the phenomenological effects of ionizing radiation on a wide variety of materials, including the irradiated hands of early radiologists. One scientist who became intensely interested in these radiation effects was Hugo Fricke (Fricke Dosimetry) who established a laboratory in 1928 dedicated to studies on chemical effects of radiation, the results of which he believed were necessary to understand observed radiobiological effects. In this Platinum Issue of Radiation Research (70 years of continuous publication), we present the early history of the development of radiation chemistry and its contributions to all levels of mechanistic radiobiology. We summarize its development as one of the four disciplinary pillars of the Radiation Research Society and its Journal, Radiation Research, founded during the period 1952-1954. In addition, the work of scientists who contributed substantially to the discipline of Radiation Chemistry and to the birth, life and culture of the Society and its journal is presented. In the years following 1954, the increasing knowledge about the underlying temporal and spatial properties of the species produced by various types of radiation is summarized and related to its radiobiology and to modern technologies (e.g., pulsed radiolysis, electron paramagnetic resonance) which became available as the discipline of radiation chemistry developed. A summary of important results from these studies on Radiation Chemistry/Biochemistry in the 20th and 21st Century up to the present time is presented. Finally, we look into the future to see what possible directions radiation chemistry studies might take, based upon promising current research. We find at least two possible directions that will need radiation chemistry expertise to ensure proper experimental design and interpretation of data. These are FLASH radiotherapy, and mechanisms underlying the effects of low doses of radiation delivered at low dose rates. Examples of how radiation chemists could provide beneficial input to these studies are provided.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00053.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

At the dawn of the 20th Century, the underlying chemistry that produced the observed effects of ionizing radiation, e.g., X rays and Radium salts, on aqueous solutions was either unknown or restricted to products found postirradiation. For example, the Curies noted that sealed aqueous solutions of Radium inexplicably decomposed over time, even when kept in the dark. By 1928 there were numerous papers describing the phenomenological effects of ionizing radiation on a wide variety of materials, including the irradiated hands of early radiologists. One scientist who became intensely interested in these radiation effects was Hugo Fricke (Fricke Dosimetry) who established a laboratory in 1928 dedicated to studies on chemical effects of radiation, the results of which he believed were necessary to understand observed radiobiological effects. In this Platinum Issue of Radiation Research (70 years of continuous publication), we present the early history of the development of radiation chemistry and its contributions to all levels of mechanistic radiobiology. We summarize its development as one of the four disciplinary pillars of the Radiation Research Society and its Journal, Radiation Research, founded during the period 1952-1954. In addition, the work of scientists who contributed substantially to the discipline of Radiation Chemistry and to the birth, life and culture of the Society and its journal is presented. In the years following 1954, the increasing knowledge about the underlying temporal and spatial properties of the species produced by various types of radiation is summarized and related to its radiobiology and to modern technologies (e.g., pulsed radiolysis, electron paramagnetic resonance) which became available as the discipline of radiation chemistry developed. A summary of important results from these studies on Radiation Chemistry/Biochemistry in the 20th and 21st Century up to the present time is presented. Finally, we look into the future to see what possible directions radiation chemistry studies might take, based upon promising current research. We find at least two possible directions that will need radiation chemistry expertise to ensure proper experimental design and interpretation of data. These are FLASH radiotherapy, and mechanisms underlying the effects of low doses of radiation delivered at low dose rates. Examples of how radiation chemists could provide beneficial input to these studies are provided.

辐射化学与辐射研究:从开始到白金版的历史。
在 20 世纪初,人们对电离辐射(如 X 射线和镭盐)对水溶液产生影响的基本化学原理还一无所知,或者仅限于辐照后发现的产物。例如,居里夫妇注意到,密封的镭水溶液会莫名其妙地随着时间的推移而分解,即使保存在黑暗中也是如此。到 1928 年,有许多论文描述了电离辐射对各种材料的现象学影响,包括早期放射科医生的手受到的辐照。雨果-弗里克(Fricke Dosimetry)是对这些辐射效应产生浓厚兴趣的科学家之一,他于 1928 年建立了一个实验室,专门研究辐射的化学效应。在本期《辐射研究》白金刊(连续出版 70 年)中,我们将介绍辐射化学的早期发展历史及其对各级机理辐射生物学的贡献。我们总结了辐射化学作为辐射研究学会及其期刊《辐射研究》(创刊于 1952-1954 年)四大学科支柱之一的发展历程。此外,我们还介绍了对辐射化学学科以及学会及其期刊的诞生、生命和文化做出重大贡献的科学家的工作。在 1954 年之后的几年中,人们对各种辐射产生的物质的基本时空特性的认识不断提高,这些认识与辐射生物学和现代技术(如脉冲辐射分解、电子顺磁共振)有关,而现代技术是随着辐射化学学科的发展而出现的。我们总结了 20 世纪和 21 世纪至今辐射化学/生物化学研究的重要成果。最后,我们展望未来,根据目前前景看好的研究,看看辐射化学研究可能会朝着什么方向发展。我们发现至少有两个可能的研究方向需要辐射化学专业知识来确保正确的实验设计和数据解读。这两个方向是闪烁放疗(FLASH radiotherapy)和低剂量辐射的效应机制。我们将举例说明辐射化学家如何为这些研究提供有益的投入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信