{"title":"Using rDNA ITS2 barcoding to identify kratom (Mitragyna speciosa) from the genus Mitragyna and Neolamarckia cadamba.","authors":"Meng-Yi Chen, Yu-Ching Tu, Hsin-Yi Shyu, Ting-An Lin, Chun-Pai Juan, Fang-Chin Wu","doi":"10.1002/elps.202400003","DOIUrl":null,"url":null,"abstract":"<p><p>This study collected 80 samples of suspected kratom plant powder. A polymerase chain reaction sequence analysis was conducted using two sets of DNA barcode primers for plant ribosomal (r)DNA internal transcribed spacers (ITSs), namely, ITS3/ITS4 and ITS-p3/ITS-u4. Among the 80 samples, 40 were analyzed using the ITS3/ITS4 primer pair, and then DNA sequences were subjected to a National Center for Biotechnology Information-Basic Local Alignment Search Tool (NCBI-BLAST) comparison. Results showed that 29 samples had a 100% match (364/364) with Mitragyna speciosa (kratom), and 6 samples had a 99.73% match (363/364) with M. speciosa, whereas 5 samples had disordered and unreadable sequences. The 5 unreadable samples and an additional 40 suspected kratom samples were then analyzed using the ITS-p3/ITS-u4 primer pair, followed by an NCBI-BLAST comparison. Among these, 32 samples had a 100% match (404/404) with M. speciosa, and 11 samples had a 99.75% match (403/404) with M. speciosa. Among the samples with sequences matching M. speciosa, three distinct types were observed (no variance/404, 287M/404, and 287A/404). One sample had a 99.51% match (404/406) with Neolamarckia cadamba, and another sample had a sequencing length of 305 bp, with 25 positions showing mixed base pairs, indicating a mixture of different species. Analysis of the mixed base pair pattern suggested a possible mixture of M. speciosa and N. cadamba. Actually, M. speciosa and N. cadamba have very similar external morphologies. This indicates that the ITS-p3/ITS-u4 primer pair is effective in distinguishing mixtures of M. speciosa and N. cadamba and is thus more suitable than ITS3/ITS4 for identifying and analyzing samples of suspected kratom plant powder.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400003","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study collected 80 samples of suspected kratom plant powder. A polymerase chain reaction sequence analysis was conducted using two sets of DNA barcode primers for plant ribosomal (r)DNA internal transcribed spacers (ITSs), namely, ITS3/ITS4 and ITS-p3/ITS-u4. Among the 80 samples, 40 were analyzed using the ITS3/ITS4 primer pair, and then DNA sequences were subjected to a National Center for Biotechnology Information-Basic Local Alignment Search Tool (NCBI-BLAST) comparison. Results showed that 29 samples had a 100% match (364/364) with Mitragyna speciosa (kratom), and 6 samples had a 99.73% match (363/364) with M. speciosa, whereas 5 samples had disordered and unreadable sequences. The 5 unreadable samples and an additional 40 suspected kratom samples were then analyzed using the ITS-p3/ITS-u4 primer pair, followed by an NCBI-BLAST comparison. Among these, 32 samples had a 100% match (404/404) with M. speciosa, and 11 samples had a 99.75% match (403/404) with M. speciosa. Among the samples with sequences matching M. speciosa, three distinct types were observed (no variance/404, 287M/404, and 287A/404). One sample had a 99.51% match (404/406) with Neolamarckia cadamba, and another sample had a sequencing length of 305 bp, with 25 positions showing mixed base pairs, indicating a mixture of different species. Analysis of the mixed base pair pattern suggested a possible mixture of M. speciosa and N. cadamba. Actually, M. speciosa and N. cadamba have very similar external morphologies. This indicates that the ITS-p3/ITS-u4 primer pair is effective in distinguishing mixtures of M. speciosa and N. cadamba and is thus more suitable than ITS3/ITS4 for identifying and analyzing samples of suspected kratom plant powder.