{"title":"Using rDNA ITS2 barcoding to identify kratom (Mitragyna speciosa) from the genus Mitragyna and Neolamarckia cadamba.","authors":"Meng-Yi Chen, Yu-Ching Tu, Hsin-Yi Shyu, Ting-An Lin, Chun-Pai Juan, Fang-Chin Wu","doi":"10.1002/elps.202400003","DOIUrl":null,"url":null,"abstract":"<p><p>This study collected 80 samples of suspected kratom plant powder. A polymerase chain reaction sequence analysis was conducted using two sets of DNA barcode primers for plant ribosomal (r)DNA internal transcribed spacers (ITSs), namely, ITS3/ITS4 and ITS-p3/ITS-u4. Among the 80 samples, 40 were analyzed using the ITS3/ITS4 primer pair, and then DNA sequences were subjected to a National Center for Biotechnology Information-Basic Local Alignment Search Tool (NCBI-BLAST) comparison. Results showed that 29 samples had a 100% match (364/364) with Mitragyna speciosa (kratom), and 6 samples had a 99.73% match (363/364) with M. speciosa, whereas 5 samples had disordered and unreadable sequences. The 5 unreadable samples and an additional 40 suspected kratom samples were then analyzed using the ITS-p3/ITS-u4 primer pair, followed by an NCBI-BLAST comparison. Among these, 32 samples had a 100% match (404/404) with M. speciosa, and 11 samples had a 99.75% match (403/404) with M. speciosa. Among the samples with sequences matching M. speciosa, three distinct types were observed (no variance/404, 287M/404, and 287A/404). One sample had a 99.51% match (404/406) with Neolamarckia cadamba, and another sample had a sequencing length of 305 bp, with 25 positions showing mixed base pairs, indicating a mixture of different species. Analysis of the mixed base pair pattern suggested a possible mixture of M. speciosa and N. cadamba. Actually, M. speciosa and N. cadamba have very similar external morphologies. This indicates that the ITS-p3/ITS-u4 primer pair is effective in distinguishing mixtures of M. speciosa and N. cadamba and is thus more suitable than ITS3/ITS4 for identifying and analyzing samples of suspected kratom plant powder.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study collected 80 samples of suspected kratom plant powder. A polymerase chain reaction sequence analysis was conducted using two sets of DNA barcode primers for plant ribosomal (r)DNA internal transcribed spacers (ITSs), namely, ITS3/ITS4 and ITS-p3/ITS-u4. Among the 80 samples, 40 were analyzed using the ITS3/ITS4 primer pair, and then DNA sequences were subjected to a National Center for Biotechnology Information-Basic Local Alignment Search Tool (NCBI-BLAST) comparison. Results showed that 29 samples had a 100% match (364/364) with Mitragyna speciosa (kratom), and 6 samples had a 99.73% match (363/364) with M. speciosa, whereas 5 samples had disordered and unreadable sequences. The 5 unreadable samples and an additional 40 suspected kratom samples were then analyzed using the ITS-p3/ITS-u4 primer pair, followed by an NCBI-BLAST comparison. Among these, 32 samples had a 100% match (404/404) with M. speciosa, and 11 samples had a 99.75% match (403/404) with M. speciosa. Among the samples with sequences matching M. speciosa, three distinct types were observed (no variance/404, 287M/404, and 287A/404). One sample had a 99.51% match (404/406) with Neolamarckia cadamba, and another sample had a sequencing length of 305 bp, with 25 positions showing mixed base pairs, indicating a mixture of different species. Analysis of the mixed base pair pattern suggested a possible mixture of M. speciosa and N. cadamba. Actually, M. speciosa and N. cadamba have very similar external morphologies. This indicates that the ITS-p3/ITS-u4 primer pair is effective in distinguishing mixtures of M. speciosa and N. cadamba and is thus more suitable than ITS3/ITS4 for identifying and analyzing samples of suspected kratom plant powder.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.