Minglv Fang, Ying Liu, Xiaoyan Gao, Jing Yu, Xiaohui Tu, Xueying Mo, Huanhu Zhu, Yan Zou, Cheng Huang, Shengjie Fan
{"title":"Perillaldehyde alleviates polyQ-induced neurodegeneration through the induction of autophagy and mitochondrial UPR in Caenorhabditis elegans.","authors":"Minglv Fang, Ying Liu, Xiaoyan Gao, Jing Yu, Xiaohui Tu, Xueying Mo, Huanhu Zhu, Yan Zou, Cheng Huang, Shengjie Fan","doi":"10.1002/biof.2089","DOIUrl":null,"url":null,"abstract":"<p><p>Huntington's disease (HD) is a fatal neurodegenerative disease associated with autophagy disorder and mitochondrial dysfunction. Here, we identified therapeutic potential of perillaldehyde (PAE), a monoterpene compound obtained from Perilla frutescens (L.) Britt., in the Caenorhabditis elegans (C. elegans) model of HD, which included lifespan extension, healthspan improvement, decrease in polyglutamine (polyQ) aggregation, and preservation of mitochondrial network. Further analyses indicated that PAE was able to induce autophagy and mitochondrial unfolded protein reaction (UPR<sup>mt</sup>) activation and positively regulated expression of associated genes. In lgg-1 RNAi C. elegans or C. elegans with UPR<sup>mt</sup>-related genes knockdown, the effects of PAE treatment on polyQ aggregation or rescue polyQ-induced toxicity were attenuated, suggesting that its neuroprotective activity depended on autophagy and UPR<sup>mt</sup>. Moreover, we found that pharmacological and genetic activation of UPR<sup>mt</sup> generally protected C. elegans from polyQ-induced cytotoxicity. Finally, PAE promoted serotonin synthesis by upregulating expression of TPH-1, and serotonin synthesis and neurosecretion were required for PAE-mediated UPR<sup>mt</sup> activation and its neuroprotective activity. In conclusion, PAE is a potential therapy for polyQ-related diseases including HD, which is dependent on autophagy and cell-non-autonomous UPR<sup>mt</sup> activation.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/biof.2089","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease associated with autophagy disorder and mitochondrial dysfunction. Here, we identified therapeutic potential of perillaldehyde (PAE), a monoterpene compound obtained from Perilla frutescens (L.) Britt., in the Caenorhabditis elegans (C. elegans) model of HD, which included lifespan extension, healthspan improvement, decrease in polyglutamine (polyQ) aggregation, and preservation of mitochondrial network. Further analyses indicated that PAE was able to induce autophagy and mitochondrial unfolded protein reaction (UPRmt) activation and positively regulated expression of associated genes. In lgg-1 RNAi C. elegans or C. elegans with UPRmt-related genes knockdown, the effects of PAE treatment on polyQ aggregation or rescue polyQ-induced toxicity were attenuated, suggesting that its neuroprotective activity depended on autophagy and UPRmt. Moreover, we found that pharmacological and genetic activation of UPRmt generally protected C. elegans from polyQ-induced cytotoxicity. Finally, PAE promoted serotonin synthesis by upregulating expression of TPH-1, and serotonin synthesis and neurosecretion were required for PAE-mediated UPRmt activation and its neuroprotective activity. In conclusion, PAE is a potential therapy for polyQ-related diseases including HD, which is dependent on autophagy and cell-non-autonomous UPRmt activation.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.