The role of nonesterified fatty acids in cancer biology: Focus on tryptophan and related metabolism

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"The role of nonesterified fatty acids in cancer biology: Focus on tryptophan and related metabolism","authors":"","doi":"10.1016/j.bbalip.2024.159531","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma nonesterified fatty acids (NEFA) are elevated in cancer, because of decreased albumin levels and of fatty acid oxidation, and increased fatty acid synthesis and lipolysis. Albumin depletion and NEFA elevation maximally release albumin-bound tryptophan (Trp) and increase its flux down the kynurenine pathway, leading to increased production of proinflammatory kynurenine metabolites, which tumors use to undermine T-cell function and achieve immune escape. Activation of the aryl hydrocarbon receptor by kynurenic acid promotes extrahepatic Trp degradation by indoleamine 2,3-dioxygenase and leads to upregulation of poly (ADP-ribose) polymerase, activation of which and also of SIRT1 (silent mating type information regulation 2 homolog 1) could lead to depletion of NAD<sup>+</sup> and ATP, resulting in cell death. NEFA also modulate heme synthesis and degradation, changes in which impact homocysteine metabolism and production of reduced glutathione and hydrogen sulphide. The significance of the interactions between heme and homocysteine metabolism in cancer biology has received little attention. Targeting Trp disposition in cancer to prevent the NEFA effects is suggested.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124000817","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma nonesterified fatty acids (NEFA) are elevated in cancer, because of decreased albumin levels and of fatty acid oxidation, and increased fatty acid synthesis and lipolysis. Albumin depletion and NEFA elevation maximally release albumin-bound tryptophan (Trp) and increase its flux down the kynurenine pathway, leading to increased production of proinflammatory kynurenine metabolites, which tumors use to undermine T-cell function and achieve immune escape. Activation of the aryl hydrocarbon receptor by kynurenic acid promotes extrahepatic Trp degradation by indoleamine 2,3-dioxygenase and leads to upregulation of poly (ADP-ribose) polymerase, activation of which and also of SIRT1 (silent mating type information regulation 2 homolog 1) could lead to depletion of NAD+ and ATP, resulting in cell death. NEFA also modulate heme synthesis and degradation, changes in which impact homocysteine metabolism and production of reduced glutathione and hydrogen sulphide. The significance of the interactions between heme and homocysteine metabolism in cancer biology has received little attention. Targeting Trp disposition in cancer to prevent the NEFA effects is suggested.

Abstract Image

非酯化脂肪酸在癌症生物学中的作用:关注色氨酸及相关代谢。
癌症患者血浆中的非酯化脂肪酸(NEFA)会升高,这是因为白蛋白水平和脂肪酸氧化水平降低,脂肪酸合成和脂肪分解增加。白蛋白耗竭和 NEFA 升高会最大限度地释放与白蛋白结合的色氨酸(Trp),并增加其在犬尿氨酸途径中的通量,从而导致促炎性犬尿氨酸代谢物的产生增加,肿瘤利用这些代谢物破坏 T 细胞功能,实现免疫逃逸。犬尿酸激活芳基烃受体会促进肝外 Trp 通过吲哚胺 2,3- 二氧合酶降解,并导致多聚(ADP-核糖)聚合酶上调,而多聚(ADP-核糖)聚合酶和 SIRT1(沉默交配型信息调节 2 同源物 1)的激活会导致 NAD+ 和 ATP 的耗竭,从而导致细胞死亡。NEFA 还能调节血红素的合成和降解,其变化会影响同型半胱氨酸的代谢以及还原型谷胱甘肽和硫化氢的产生。血红素和同型半胱氨酸代谢之间的相互作用在癌症生物学中的意义很少受到关注。建议以癌症中 Trp 的处置为目标,以防止 NEFA 的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信