Measurement of inward leakage of full-face masks in EN and ISO standards: comparison of gas and aerosol test agents.

IF 1.8 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Audrey Santandrea, Mathieu Marchal, Sandrine Chazelet, Stéphanie Marsteau
{"title":"Measurement of inward leakage of full-face masks in EN and ISO standards: comparison of gas and aerosol test agents.","authors":"Audrey Santandrea, Mathieu Marchal, Sandrine Chazelet, Stéphanie Marsteau","doi":"10.1093/annweh/wxae056","DOIUrl":null,"url":null,"abstract":"<p><p>In Europe, respiratory protective devices must be certified before they can be marketed. Among the parameters of interest, inward leakage (IL) characterizes the tightness between the face seal and the face, to verify that the device is well-designed. European standard EN 13274-1 (2001) and International Organization for Standardization (ISO) standard ISO 16900-1 (2019) specify that IL should be measured using sodium chloride (NaCl) aerosol or sulfur hexafluoride (SF6) gas. For reusable masks made of nonporous materials, both test agents are considered equally acceptable. However, the few studies that have compared IL values measured with various aerosols and gases have come to divergent conclusions. This work then aimed to measure IL with the test agents recommended by the standards to determine whether they are really equivalent. Since krypton (Kr) is an interesting candidate for replacing SF6 in standard tests, IL was assessed with SF6 and Kr simultaneously, and with NaCl aerosol using various calculation methods. Tests were carried out on 5 models of full-face masks donned on a headform connected to a breathing machine simulating 3 sinusoidal breathing rates of various intensities. The respirator fit on the headform was evaluated using a controlled negative pressure method to determine a manikin fit factor. Four scenarios were then tested to represent very poor, bad, good, and excellent fit. Gas concentration was measured using a mass spectrometer, and IL was calculated for SF6 and Kr. A combination of 3 devices allowed the determination of the number-based concentration of particles with diameters between 20 nm and 2 µm, and IL was calculated for each of the 33 channels, as well as using a cumulative number concentration. In addition, to comply with standards, a conversion was carried out to calculate IL using a cumulative mass concentration. The results of this work evidenced that the IL values measured with NaCl were systematically lower than those determined with gases. IL was also shown to vary with particle size, with a maximum value exceeding that calculated with cumulative concentrations (in number or mass). As part of the revision of the standards, protocols for measuring inward leakage should be redefined. On the one hand, acceptability thresholds should be re-evaluated according to the nature of the test agent (gas or aerosol), as it is clear that the 2 options do not give the same results for a given configuration. On the other hand, the aerosol leakage measurement protocol needs to be reworked to enable the measurement of a well-defined, robust, and reproducible inward leakage value.</p>","PeriodicalId":8362,"journal":{"name":"Annals Of Work Exposures and Health","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals Of Work Exposures and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/annweh/wxae056","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

In Europe, respiratory protective devices must be certified before they can be marketed. Among the parameters of interest, inward leakage (IL) characterizes the tightness between the face seal and the face, to verify that the device is well-designed. European standard EN 13274-1 (2001) and International Organization for Standardization (ISO) standard ISO 16900-1 (2019) specify that IL should be measured using sodium chloride (NaCl) aerosol or sulfur hexafluoride (SF6) gas. For reusable masks made of nonporous materials, both test agents are considered equally acceptable. However, the few studies that have compared IL values measured with various aerosols and gases have come to divergent conclusions. This work then aimed to measure IL with the test agents recommended by the standards to determine whether they are really equivalent. Since krypton (Kr) is an interesting candidate for replacing SF6 in standard tests, IL was assessed with SF6 and Kr simultaneously, and with NaCl aerosol using various calculation methods. Tests were carried out on 5 models of full-face masks donned on a headform connected to a breathing machine simulating 3 sinusoidal breathing rates of various intensities. The respirator fit on the headform was evaluated using a controlled negative pressure method to determine a manikin fit factor. Four scenarios were then tested to represent very poor, bad, good, and excellent fit. Gas concentration was measured using a mass spectrometer, and IL was calculated for SF6 and Kr. A combination of 3 devices allowed the determination of the number-based concentration of particles with diameters between 20 nm and 2 µm, and IL was calculated for each of the 33 channels, as well as using a cumulative number concentration. In addition, to comply with standards, a conversion was carried out to calculate IL using a cumulative mass concentration. The results of this work evidenced that the IL values measured with NaCl were systematically lower than those determined with gases. IL was also shown to vary with particle size, with a maximum value exceeding that calculated with cumulative concentrations (in number or mass). As part of the revision of the standards, protocols for measuring inward leakage should be redefined. On the one hand, acceptability thresholds should be re-evaluated according to the nature of the test agent (gas or aerosol), as it is clear that the 2 options do not give the same results for a given configuration. On the other hand, the aerosol leakage measurement protocol needs to be reworked to enable the measurement of a well-defined, robust, and reproducible inward leakage value.

EN 和 ISO 标准中全面罩向内泄漏的测量:气体和气溶胶测试剂的比较。
在欧洲,呼吸防护设备必须经过认证才能上市销售。在相关参数中,向内泄漏 (IL) 表征了面封和面罩之间的密封性,以验证设备是否设计合理。欧洲标准 EN 13274-1(2001 年)和国际标准化组织 (ISO) 标准 ISO 16900-1(2019 年)规定,应使用氯化钠 (NaCl) 气溶胶或六氟化硫 (SF6) 气体测量 IL。对于无孔材料制成的可重复使用口罩,这两种测试剂被认为同样可以接受。然而,对使用各种气溶胶和气体测量的 IL 值进行比较的少数研究得出了不同的结论。因此,这项工作旨在使用标准推荐的测试剂测量 IL 值,以确定它们是否真的等效。由于氪(Kr)在标准测试中是替代 SF6 的一个令人感兴趣的候选气体,因此同时使用 SF6 和 Kr 以及使用氯化钠气溶胶(使用各种计算方法)对 IL 进行了评估。测试在连接到呼吸机的头模上对 5 种型号的全脸面罩进行,模拟了 3 种不同强度的正弦呼吸频率。使用受控负压法评估了头模与呼吸器的密合度,以确定人体模型密合系数。然后测试了四种情况,分别代表极差、差、好和优。使用质谱仪测量气体浓度,并计算 SF6 和 Kr 的 IL 值。通过 3 种设备的组合,可以测定直径在 20 纳米到 2 微米之间的颗粒的数量浓度,并计算出 33 个通道中每个通道的 IL 值以及累积数量浓度。此外,为了符合标准,还进行了转换,使用累积质量浓度计算 IL。这项工作的结果表明,用氯化钠测得的 IL 值明显低于用气体测得的 IL 值。IL 值还随颗粒大小而变化,最大值超过了用累积浓度(数量或质量)计算的值。作为标准修订工作的一部分,应重新定义测量向内泄漏的规程。一方面,应根据测试剂(气体或气溶胶)的性质重新评估可接受性阈值,因为很明显,对于特定配置,这两种方案得出的结果并不相同。另一方面,需要重新制定气溶胶泄漏测量协议,以便能够测量出定义明确、可靠且可重复的内泄漏值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals Of Work Exposures and Health
Annals Of Work Exposures and Health Medicine-Public Health, Environmental and Occupational Health
CiteScore
4.60
自引率
19.20%
发文量
79
期刊介绍: About the Journal Annals of Work Exposures and Health is dedicated to presenting advances in exposure science supporting the recognition, quantification, and control of exposures at work, and epidemiological studies on their effects on human health and well-being. A key question we apply to submission is, "Is this paper going to help readers better understand, quantify, and control conditions at work that adversely or positively affect health and well-being?" We are interested in high quality scientific research addressing: the quantification of work exposures, including chemical, biological, physical, biomechanical, and psychosocial, and the elements of work organization giving rise to such exposures; the relationship between these exposures and the acute and chronic health consequences for those exposed and their families and communities; populations at special risk of work-related exposures including women, under-represented minorities, immigrants, and other vulnerable groups such as temporary, contingent and informal sector workers; the effectiveness of interventions addressing exposure and risk including production technologies, work process engineering, and personal protective systems; policies and management approaches to reduce risk and improve health and well-being among workers, their families or communities; methodologies and mechanisms that underlie the quantification and/or control of exposure and risk. There is heavy pressure on space in the journal, and the above interests mean that we do not usually publish papers that simply report local conditions without generalizable results. We are also unlikely to publish reports on human health and well-being without information on the work exposure characteristics giving rise to the effects. We particularly welcome contributions from scientists based in, or addressing conditions in, developing economies that fall within the above scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信