Fully Printed Multilayer Ceramic Capacitors Based on High-k Perovskite Nanosheets.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-07-11 DOI:10.1002/smll.202404581
Pengxiang Zhang, Feng Dang, Xin Zhang, Ce-Wen Nan, Bao-Wen Li
{"title":"Fully Printed Multilayer Ceramic Capacitors Based on High-k Perovskite Nanosheets.","authors":"Pengxiang Zhang, Feng Dang, Xin Zhang, Ce-Wen Nan, Bao-Wen Li","doi":"10.1002/smll.202404581","DOIUrl":null,"url":null,"abstract":"<p><p>Printing technology enables the integration of chemically exfoliated perovskite nanosheets into high-performance microcapacitors. Theoretically, the capacitance value can be further enhanced by designing and constructing multilayer structures without increasing the device size. Yet, issues such as interlayer penetration in multilayer heterojunctions constructed using inkjet printing technology further limit the realization of this potential. Herein, a series of multilayer configurations, including Ag/(Ca<sub>2</sub>NaNb<sub>4</sub>O<sub>13</sub>/Ag)<sub>n</sub> and graphene/(Ca<sub>2</sub>NaNb<sub>4</sub>O<sub>13</sub>/graphene)<sub>n</sub> (n = 1-3), are successfully inkjet-printed onto diverse rigid and flexible substrates through optimized ink formulations, inkjet printing parameters, thermal treatment conditions, and rational multilayer structural design using high-k perovskite nanosheets, graphene nanosheets and silver. The dielectric performance is optimized by fine-tuning the number of dielectric layers and modifying the electrode/dielectric interface. As a result, the graphene/(Ca<sub>2</sub>NaNb<sub>4</sub>O<sub>13</sub>/graphene)<sub>3</sub> multilayer ceramic capacitors exhibit a remarkable capacitance density of 346 ± 12 nF cm<sup>-2</sup> and a high dielectric constant of 193 ± 18. Additionally, these devices demonstrate moderate insulation properties, flexibility, thermal stability, and chemical sensitivity. This work shed light on the potential of multilayer structural design in additive manufacturing of high-performance 2D material-based ceramic capacitors.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202404581","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Printing technology enables the integration of chemically exfoliated perovskite nanosheets into high-performance microcapacitors. Theoretically, the capacitance value can be further enhanced by designing and constructing multilayer structures without increasing the device size. Yet, issues such as interlayer penetration in multilayer heterojunctions constructed using inkjet printing technology further limit the realization of this potential. Herein, a series of multilayer configurations, including Ag/(Ca2NaNb4O13/Ag)n and graphene/(Ca2NaNb4O13/graphene)n (n = 1-3), are successfully inkjet-printed onto diverse rigid and flexible substrates through optimized ink formulations, inkjet printing parameters, thermal treatment conditions, and rational multilayer structural design using high-k perovskite nanosheets, graphene nanosheets and silver. The dielectric performance is optimized by fine-tuning the number of dielectric layers and modifying the electrode/dielectric interface. As a result, the graphene/(Ca2NaNb4O13/graphene)3 multilayer ceramic capacitors exhibit a remarkable capacitance density of 346 ± 12 nF cm-2 and a high dielectric constant of 193 ± 18. Additionally, these devices demonstrate moderate insulation properties, flexibility, thermal stability, and chemical sensitivity. This work shed light on the potential of multilayer structural design in additive manufacturing of high-performance 2D material-based ceramic capacitors.

Abstract Image

基于高 k 值包晶石纳米片的全印刷多层陶瓷电容器。
通过印刷技术,可以将化学剥离的透辉石纳米片集成到高性能微型电容器中。从理论上讲,通过设计和构建多层结构,可以在不增加器件尺寸的情况下进一步提高电容值。然而,使用喷墨打印技术构建的多层异质结存在层间渗透等问题,进一步限制了这一潜力的发挥。在本文中,通过优化墨水配方、喷墨打印参数、热处理条件以及使用高k包晶纳米片、石墨烯纳米片和银进行合理的多层结构设计,成功地将一系列多层结构(包括Ag/(Ca2NaNb4O13/Ag)n和石墨烯/(Ca2NaNb4O13/石墨烯)n (n = 1-3))喷墨打印到不同的刚性和柔性基底上。通过微调电介质层数和改变电极/电介质界面,优化了电介质性能。结果,石墨烯/(Ca2NaNb4O13/石墨烯)3 多层陶瓷电容器的电容密度达到了 346 ± 12 nF cm-2,介电常数高达 193 ± 18。此外,这些器件还具有适中的绝缘性能、柔韧性、热稳定性和化学敏感性。这项研究揭示了多层结构设计在基于二维材料的高性能陶瓷电容器增材制造中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信