Linguistic style as a digital marker for depression severity: An ambulatory assessment pilot study in patients with depressive disorder undergoing sleep deprivation therapy.
Lisa-Marie Hartnagel, Ulrich W Ebner-Priemer, Jerome C Foo, Fabian Streit, Stephanie H Witt, Josef Frank, Matthias F Limberger, Andrea B Horn, Maria Gilles, Marcella Rietschel, Lea Sirignano
{"title":"Linguistic style as a digital marker for depression severity: An ambulatory assessment pilot study in patients with depressive disorder undergoing sleep deprivation therapy.","authors":"Lisa-Marie Hartnagel, Ulrich W Ebner-Priemer, Jerome C Foo, Fabian Streit, Stephanie H Witt, Josef Frank, Matthias F Limberger, Andrea B Horn, Maria Gilles, Marcella Rietschel, Lea Sirignano","doi":"10.1111/acps.13726","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Digital phenotyping and monitoring tools are the most promising approaches to automatically detect upcoming depressive episodes. Especially, linguistic style has been seen as a potential behavioral marker of depression, as cross-sectional studies showed, for example, less frequent use of positive emotion words, intensified use of negative emotion words, and more self-references in patients with depression compared to healthy controls. However, longitudinal studies are sparse and therefore it remains unclear whether within-person fluctuations in depression severity are associated with individuals' linguistic style.</p><p><strong>Methods: </strong>To capture affective states and concomitant speech samples longitudinally, we used an ambulatory assessment approach sampling multiple times a day via smartphones in patients diagnosed with depressive disorder undergoing sleep deprivation therapy. This intervention promises a rapid change of affective symptoms within a short period of time, assuring sufficient variability in depressive symptoms. We extracted word categories from the transcribed speech samples using the Linguistic Inquiry and Word Count.</p><p><strong>Results: </strong>Our analyses revealed that more pleasant affective momentary states (lower reported depression severity, lower negative affective state, higher positive affective state, (positive) valence, energetic arousal and calmness) are mirrored in the use of less negative emotion words and more positive emotion words.</p><p><strong>Conclusion: </strong>We conclude that a patient's linguistic style, especially the use of positive and negative emotion words, is associated with self-reported affective states and thus is a promising feature for speech-based automated monitoring and prediction of upcoming episodes, ultimately leading to better patient care.</p>","PeriodicalId":108,"journal":{"name":"Acta Psychiatrica Scandinavica","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Psychiatrica Scandinavica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/acps.13726","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Digital phenotyping and monitoring tools are the most promising approaches to automatically detect upcoming depressive episodes. Especially, linguistic style has been seen as a potential behavioral marker of depression, as cross-sectional studies showed, for example, less frequent use of positive emotion words, intensified use of negative emotion words, and more self-references in patients with depression compared to healthy controls. However, longitudinal studies are sparse and therefore it remains unclear whether within-person fluctuations in depression severity are associated with individuals' linguistic style.
Methods: To capture affective states and concomitant speech samples longitudinally, we used an ambulatory assessment approach sampling multiple times a day via smartphones in patients diagnosed with depressive disorder undergoing sleep deprivation therapy. This intervention promises a rapid change of affective symptoms within a short period of time, assuring sufficient variability in depressive symptoms. We extracted word categories from the transcribed speech samples using the Linguistic Inquiry and Word Count.
Results: Our analyses revealed that more pleasant affective momentary states (lower reported depression severity, lower negative affective state, higher positive affective state, (positive) valence, energetic arousal and calmness) are mirrored in the use of less negative emotion words and more positive emotion words.
Conclusion: We conclude that a patient's linguistic style, especially the use of positive and negative emotion words, is associated with self-reported affective states and thus is a promising feature for speech-based automated monitoring and prediction of upcoming episodes, ultimately leading to better patient care.
期刊介绍:
Acta Psychiatrica Scandinavica acts as an international forum for the dissemination of information advancing the science and practice of psychiatry. In particular we focus on communicating frontline research to clinical psychiatrists and psychiatric researchers.
Acta Psychiatrica Scandinavica has traditionally been and remains a journal focusing predominantly on clinical psychiatry, but translational psychiatry is a topic of growing importance to our readers. Therefore, the journal welcomes submission of manuscripts based on both clinical- and more translational (e.g. preclinical and epidemiological) research. When preparing manuscripts based on translational studies for submission to Acta Psychiatrica Scandinavica, the authors should place emphasis on the clinical significance of the research question and the findings. Manuscripts based solely on preclinical research (e.g. animal models) are normally not considered for publication in the Journal.