Navigating the landscape of enzyme design: from molecular simulations to machine learning

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiahui Zhou and Meilan Huang
{"title":"Navigating the landscape of enzyme design: from molecular simulations to machine learning","authors":"Jiahui Zhou and Meilan Huang","doi":"10.1039/D4CS00196F","DOIUrl":null,"url":null,"abstract":"<p >Global environmental issues and sustainable development call for new technologies for fine chemical synthesis and waste valorization. Biocatalysis has attracted great attention as the alternative to the traditional organic synthesis. However, it is challenging to navigate the vast sequence space to identify those proteins with admirable biocatalytic functions. The recent development of deep-learning based structure prediction methods such as AlphaFold2 reinforced by different computational simulations or multiscale calculations has largely expanded the 3D structure databases and enabled structure-based design. While structure-based approaches shed light on site-specific enzyme engineering, they are not suitable for large-scale screening of potential biocatalysts. Effective utilization of big data using machine learning techniques opens up a new era for accelerated predictions. Here, we review the approaches and applications of structure-based and machine-learning guided enzyme design. We also provide our view on the challenges and perspectives on effectively employing enzyme design approaches integrating traditional molecular simulations and machine learning, and the importance of database construction and algorithm development in attaining predictive ML models to explore the sequence fitness landscape for the design of admirable biocatalysts.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":40.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cs/d4cs00196f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d4cs00196f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Global environmental issues and sustainable development call for new technologies for fine chemical synthesis and waste valorization. Biocatalysis has attracted great attention as the alternative to the traditional organic synthesis. However, it is challenging to navigate the vast sequence space to identify those proteins with admirable biocatalytic functions. The recent development of deep-learning based structure prediction methods such as AlphaFold2 reinforced by different computational simulations or multiscale calculations has largely expanded the 3D structure databases and enabled structure-based design. While structure-based approaches shed light on site-specific enzyme engineering, they are not suitable for large-scale screening of potential biocatalysts. Effective utilization of big data using machine learning techniques opens up a new era for accelerated predictions. Here, we review the approaches and applications of structure-based and machine-learning guided enzyme design. We also provide our view on the challenges and perspectives on effectively employing enzyme design approaches integrating traditional molecular simulations and machine learning, and the importance of database construction and algorithm development in attaining predictive ML models to explore the sequence fitness landscape for the design of admirable biocatalysts.

Abstract Image

Abstract Image

酶设计的导航:从分子模拟到机器学习。
全球环境问题和可持续发展呼唤精细化学品合成和废物价值化的新技术。作为传统有机合成的替代技术,生物催化技术备受关注。然而,要在浩瀚的序列空间中识别出具有令人钦佩的生物催化功能的蛋白质是一项挑战。最近,基于深度学习的结构预测方法(如 AlphaFold2)得到了不同计算模拟或多尺度计算的加强,在很大程度上扩展了三维结构数据库,实现了基于结构的设计。虽然基于结构的方法为特定位点的酶工程提供了启示,但并不适合大规模筛选潜在的生物催化剂。利用机器学习技术有效利用大数据开辟了加速预测的新时代。在此,我们回顾了基于结构和机器学习指导的酶设计方法和应用。我们还就有效利用传统分子模拟和机器学习相结合的酶设计方法所面临的挑战和前景,以及数据库建设和算法开发在获得预测性 ML 模型以探索序列适配性景观以设计理想的生物催化剂方面的重要性提出了自己的看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信