Enhanced Organic Carbon Triggers Transformations of Macronutrients, Micronutrients, and Secondary Plant Nutrients and Their Dynamics in the Soil under Different Cropping Systems-A Review
{"title":"Enhanced Organic Carbon Triggers Transformations of Macronutrients, Micronutrients, and Secondary Plant Nutrients and Their Dynamics in the Soil under Different Cropping Systems-A Review","authors":"Salwinder Singh Dhaliwal, Sarwan Kumar Dubey, Dileep Kumar, Amardeep Singh Toor, Sohan Singh Walia, Mehakpreet Kaur Randhawa, Gagandeep Kaur, Sharanjit Kaur Brar, Priyadarshani A. Khambalkar, Yasvir Singh Shivey","doi":"10.1007/s42729-024-01907-6","DOIUrl":null,"url":null,"abstract":"<p>Decomposition of soil organic matter (SOM) resulted in the release of mineral nutrients viz. macronutrients (N, P, and K), micronutrients (Zn, Cu, Fe, Mn), and secondary plant nutrients (Ca, Mg, and S) in soils. Loss of SOM can be inherently detrimental to crop productivity due to the adverse impacts on soil’s physical, chemical, and biological properties. Therefore, increasing awareness regarding SOM and agricultural sustainability was regained importance in the farming community. The build-up of SOM triggers to chemical transformations of macro, micro, and secondary nutrients in the soil. The SOM is a rich source of secondary nutrients, and its slow release contributes to the dynamics in soil nutrient levels. Integrated use of OM application with mineral fertilizers increased soil organic carbon (SOC) more efficiently and enhanced nutrients in the soil. The present study showed that the build-up of OM affected macro, micro, and secondary nutrients differently. The detailed review of previous research studies concluded that the build-up of OM showed a strong positive correlation with nitrogen, phosphorus, potassium, zinc, manganese, iron, and sulphur availability. However, in some cases, OM build-up demonstrated a negative correlation with copper, calcium, and magnesium availability. Thus, the present review focused on soil’s critical role of serving as a complex ecosystem that regulates numerous functions for sustainable agricultural production through nutrient cycling. The review highlighted the importance of OM added to soil in altering soil properties and thus enhanced macro, micro, and secondary plant nutrients transformations.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":"31 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01907-6","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Decomposition of soil organic matter (SOM) resulted in the release of mineral nutrients viz. macronutrients (N, P, and K), micronutrients (Zn, Cu, Fe, Mn), and secondary plant nutrients (Ca, Mg, and S) in soils. Loss of SOM can be inherently detrimental to crop productivity due to the adverse impacts on soil’s physical, chemical, and biological properties. Therefore, increasing awareness regarding SOM and agricultural sustainability was regained importance in the farming community. The build-up of SOM triggers to chemical transformations of macro, micro, and secondary nutrients in the soil. The SOM is a rich source of secondary nutrients, and its slow release contributes to the dynamics in soil nutrient levels. Integrated use of OM application with mineral fertilizers increased soil organic carbon (SOC) more efficiently and enhanced nutrients in the soil. The present study showed that the build-up of OM affected macro, micro, and secondary nutrients differently. The detailed review of previous research studies concluded that the build-up of OM showed a strong positive correlation with nitrogen, phosphorus, potassium, zinc, manganese, iron, and sulphur availability. However, in some cases, OM build-up demonstrated a negative correlation with copper, calcium, and magnesium availability. Thus, the present review focused on soil’s critical role of serving as a complex ecosystem that regulates numerous functions for sustainable agricultural production through nutrient cycling. The review highlighted the importance of OM added to soil in altering soil properties and thus enhanced macro, micro, and secondary plant nutrients transformations.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.