Longitudinal market structure detection using a dynamic modularity-spectral algorithm

Philipp Wirth, Francesca Medda, Thomas Schröder
{"title":"Longitudinal market structure detection using a dynamic modularity-spectral algorithm","authors":"Philipp Wirth, Francesca Medda, Thomas Schröder","doi":"arxiv-2407.04500","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the Dynamic Modularity-Spectral Algorithm\n(DynMSA), a novel approach to identify clusters of stocks with high\nintra-cluster correlations and low inter-cluster correlations by combining\nRandom Matrix Theory with modularity optimisation and spectral clustering. The\nprimary objective is to uncover hidden market structures and find diversifiers\nbased on return correlations, thereby achieving a more effective risk-reducing\nportfolio allocation. We applied DynMSA to constituents of the S&P 500 and\ncompared the results to sector- and market-based benchmarks. Besides the\nconception of this algorithm, our contributions further include implementing a\nsector-based calibration for modularity optimisation and a correlation-based\ndistance function for spectral clustering. Testing revealed that DynMSA\noutperforms baseline models in intra- and inter-cluster correlation\ndifferences, particularly over medium-term correlation look-backs. It also\nidentifies stable clusters and detects regime changes due to exogenous shocks,\nsuch as the COVID-19 pandemic. Portfolios constructed using our clusters showed\nhigher Sortino and Sharpe ratios, lower downside volatility, reduced maximum\ndrawdown and higher annualised returns compared to an equally weighted market\nbenchmark.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the Dynamic Modularity-Spectral Algorithm (DynMSA), a novel approach to identify clusters of stocks with high intra-cluster correlations and low inter-cluster correlations by combining Random Matrix Theory with modularity optimisation and spectral clustering. The primary objective is to uncover hidden market structures and find diversifiers based on return correlations, thereby achieving a more effective risk-reducing portfolio allocation. We applied DynMSA to constituents of the S&P 500 and compared the results to sector- and market-based benchmarks. Besides the conception of this algorithm, our contributions further include implementing a sector-based calibration for modularity optimisation and a correlation-based distance function for spectral clustering. Testing revealed that DynMSA outperforms baseline models in intra- and inter-cluster correlation differences, particularly over medium-term correlation look-backs. It also identifies stable clusters and detects regime changes due to exogenous shocks, such as the COVID-19 pandemic. Portfolios constructed using our clusters showed higher Sortino and Sharpe ratios, lower downside volatility, reduced maximum drawdown and higher annualised returns compared to an equally weighted market benchmark.
使用动态模块化光谱算法进行纵向市场结构检测
本文介绍了动态模块化-频谱算法(DynMSA),这是一种通过将随机矩阵理论与模块化优化和频谱聚类相结合来识别具有高簇内相关性和低簇间相关性的股票群组的新方法。其主要目的是揭示隐藏的市场结构,并根据回报相关性找到分散投资的方法,从而实现更有效的降低风险的投资组合配置。我们将 DynMSA 应用于标准普尔 500 指数的成分股,并将结果与行业基准和市场基准进行比较。除了该算法的概念,我们的贡献还包括为模块化优化实现了基于行业的校准,并为频谱聚类实现了基于相关性的距离函数。测试表明,DynMSA 在簇内和簇间相关性差异方面优于基线模型,尤其是在中期相关性回溯方面。它还能识别稳定的聚类,并检测到外源冲击(如 COVID-19 大流行病)导致的制度变化。与同等权重的市场基准相比,使用我们的聚类构建的投资组合显示出更高的 Sortino 和 Sharpe 比率、更低的下行波动性、更低的最大跌幅和更高的年化收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信