Influence of surfactants on selective mechanical separation of fine active materials used in high temperature electrolyzers contributing to circular economy†

Sohyun Ahn, Suvarna Patil and Martin Rudolph
{"title":"Influence of surfactants on selective mechanical separation of fine active materials used in high temperature electrolyzers contributing to circular economy†","authors":"Sohyun Ahn, Suvarna Patil and Martin Rudolph","doi":"10.1039/D4IM00044G","DOIUrl":null,"url":null,"abstract":"<p>As one of the promising hydrogen production technologies, the development of water electrolysis systems including recycling of their functional components is actively investigated. However, the focus lies on energy and chemical intensive metallurgical operations and less on mechanical separation processes in most studies. Here, an innovative surfactant-based separation process (using CTAB and SDS) is investigated to contribute to developing a selective physical separation process for ultrafine particles used in high temperature water electrolyzers (composed of NiO, LSM, ZrO<small><sub>2</sub></small>, and YSZ). Their different surface charge in alkaline solutions influences the adsorption of surfactants on particle surfaces as well as the modification of particulate wettability, which is a key separation feature. Through the observations of changes in surface charge and wetting behavior in the presence of surfactants, a feasibility of liquid–liquid particle separation (LLPS) is evaluated. The performance of LLPS with model particle mixtures shows the potential of selective separation with recovery of NiO in the organic phase, while the rest of the particles remain in the aqueous phase. Perovskite LSM is not considered in this system because it shows a high possibility of being recovered by magnetic separation. The proposed process can be further optimized by increasing the phase separation stages, and further research is needed on the NiO phase, which showed exceptional behavior in the presence of the surfactants.</p><p>Keywords: Fine particle separation; Solid oxide electrolyzer; Recycling; Particle surface modification.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d4im00044g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/im/d4im00044g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the promising hydrogen production technologies, the development of water electrolysis systems including recycling of their functional components is actively investigated. However, the focus lies on energy and chemical intensive metallurgical operations and less on mechanical separation processes in most studies. Here, an innovative surfactant-based separation process (using CTAB and SDS) is investigated to contribute to developing a selective physical separation process for ultrafine particles used in high temperature water electrolyzers (composed of NiO, LSM, ZrO2, and YSZ). Their different surface charge in alkaline solutions influences the adsorption of surfactants on particle surfaces as well as the modification of particulate wettability, which is a key separation feature. Through the observations of changes in surface charge and wetting behavior in the presence of surfactants, a feasibility of liquid–liquid particle separation (LLPS) is evaluated. The performance of LLPS with model particle mixtures shows the potential of selective separation with recovery of NiO in the organic phase, while the rest of the particles remain in the aqueous phase. Perovskite LSM is not considered in this system because it shows a high possibility of being recovered by magnetic separation. The proposed process can be further optimized by increasing the phase separation stages, and further research is needed on the NiO phase, which showed exceptional behavior in the presence of the surfactants.

Keywords: Fine particle separation; Solid oxide electrolyzer; Recycling; Particle surface modification.

Abstract Image

表面活性剂对促进循环经济的精细高温电解槽活性材料选择性机械分离的影响
作为前景广阔的制氢技术之一,水电解系统的开发(包括其功能部件的回收利用)正受到积极研究。然而,大多数研究的重点在于能源和化学品密集型冶金操作,而较少关注机械分离过程。在此,我们正在研究一种基于表面活性剂的创新分离工艺(使用 CTAB 和 SDS),以帮助开发一种选择性物理分离工艺,用于高温水电解槽中使用的超细颗粒(由 NiO、LSM、ZrO2 和 YSZ 组成)。它们在碱性溶液中的不同表面电荷会影响表面活性剂在颗粒表面的吸附以及颗粒润湿性的改变,而润湿性是关键的分离特征。通过观察表面活性剂存在时表面电荷和润湿行为的变化,评估了液-液颗粒分离(LLPS)的可行性。模型颗粒混合物的液-液颗粒分离性能表明,有机相中的氧化镍具有选择性分离的潜力,而其余颗粒则留在水相中。本系统中没有考虑包晶锂辉石,因为它很有可能被磁分离回收。建议的工艺可以通过增加相分离阶段来进一步优化,同时还需要对在表面活性剂存在下表现出特殊行为的氧化镍相进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信