Electrical transport in nanostructured Ni3Al at low temperatures

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Dongdong Zhu, Fei Dai, Haile Lei
{"title":"Electrical transport in nanostructured Ni3Al at low temperatures","authors":"Dongdong Zhu, Fei Dai, Haile Lei","doi":"10.1088/1361-6463/ad5c7a","DOIUrl":null,"url":null,"abstract":"The electrical resistivity in nanostructured Ni<sub>3</sub>Al has been discriminated to be dominated fully by the electron-magnon scattering with spin fluctuations and evolve in the form of <italic toggle=\"yes\">T</italic>\n<sup>5<italic toggle=\"yes\">/</italic>3</sup> and <italic toggle=\"yes\">T</italic>\n<sup>3<italic toggle=\"yes\">/</italic>2</sup> below and above its Curie temperature. In addition to doping into <italic toggle=\"yes\">γ</italic>′-Ni<sub>3</sub>Al nanophases, excessive Ni atoms are demonstrated to aggregate at the cores of Ni<sub>3</sub>Al so that some <italic toggle=\"yes\">γ</italic>-Ni nanophases are embedded in the <italic toggle=\"yes\">γ</italic>′-Ni<sub>3</sub>Al ones for forming the core/shell nanostructure. The itinerant electrons from <italic toggle=\"yes\">γ</italic>′-Ni<sub>3</sub>Al nanophases is further suggested to wander around the phonons in both <italic toggle=\"yes\">γ</italic>-Ni and <italic toggle=\"yes\">γ</italic>′-Ni<sub>3</sub>Al nanophases for screening the electron-phonon interactions. Consequently, the conduction electrons are scattered largely by spin fluctuations in <italic toggle=\"yes\">γ</italic>′-Ni<sub>3</sub>Al shells to suppress the contribution of phonons to the electron transport in nanostructured Ni<sub>3</sub>Al.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad5c7a","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The electrical resistivity in nanostructured Ni3Al has been discriminated to be dominated fully by the electron-magnon scattering with spin fluctuations and evolve in the form of T 5/3 and T 3/2 below and above its Curie temperature. In addition to doping into γ′-Ni3Al nanophases, excessive Ni atoms are demonstrated to aggregate at the cores of Ni3Al so that some γ-Ni nanophases are embedded in the γ′-Ni3Al ones for forming the core/shell nanostructure. The itinerant electrons from γ′-Ni3Al nanophases is further suggested to wander around the phonons in both γ-Ni and γ′-Ni3Al nanophases for screening the electron-phonon interactions. Consequently, the conduction electrons are scattered largely by spin fluctuations in γ′-Ni3Al shells to suppress the contribution of phonons to the electron transport in nanostructured Ni3Al.
纳米结构 Ni3Al 在低温下的电传输
纳米结构镍3Al的电阻率完全由带有自旋波动的电子磁子散射主导,并在居里温度以下和居里温度以上以T5/3和T3/2的形式演化。除了在γ′-Ni3Al 纳米相中掺杂之外,过量的镍原子还聚集在 Ni3Al 的核中,从而使一些γ-Ni 纳米相嵌入到γ′-Ni3Al 纳米相中,形成核/壳纳米结构。γ′-Ni3Al纳米相中的巡回电子被进一步认为会在γ-Ni和γ′-Ni3Al纳米相中的声子周围游荡,以屏蔽电子-声子相互作用。因此,传导电子在很大程度上被γ′-Ni3Al壳中的自旋波动所散射,从而抑制了声子对纳米结构Ni3Al中电子传输的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信