{"title":"A noise-tolerant fuzzy-type zeroing neural network for robust synchronization of chaotic systems","authors":"Xin Liu, Lv Zhao, Jie Jin","doi":"10.1002/cpe.8218","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>As a significant research issue in control and science field, chaos synchronization has attracted wide attention in recent years. However, it is difficult for traditional control methods to realize synchronization in predefined time and resist external interference effectively. Inspired by the excellent performance of zeroing neural network (ZNN) and the wide application of fuzzy logic system (FLS), a noise-tolerant fuzzy-type zeroing neural network (NTFTZNN) with fuzzy time-varying convergent parameter is proposed for the synchronization of chaotic systems in this paper. Notably the fuzzy parameter generated from FLS combined with traditional convergent parameter embedded into this NTFTZNN can adjust the convergence rate according to the synchronization errors. For the sake of emphasizing the advantages of NTFTZNN model, other three sets of contrast models (FTZNN, VPZNN, and PTZNN) are constructed for the purpose of comparison. Besides, the predefined-time convergence and noise-tolerant ability of NTFTZNN model are distinctly demonstrated by detailed theoretical analysis. Furthermore, synchronization simulation experiments including two chaotic systems with different dimensions are provided to verify the related mathematical theories. Finally, the schematic of NTFTZNN model for chaos synchronization is accomplished completely through Simulink, further accentuating its effectiveness and potentials in practical applications.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 22","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8218","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
As a significant research issue in control and science field, chaos synchronization has attracted wide attention in recent years. However, it is difficult for traditional control methods to realize synchronization in predefined time and resist external interference effectively. Inspired by the excellent performance of zeroing neural network (ZNN) and the wide application of fuzzy logic system (FLS), a noise-tolerant fuzzy-type zeroing neural network (NTFTZNN) with fuzzy time-varying convergent parameter is proposed for the synchronization of chaotic systems in this paper. Notably the fuzzy parameter generated from FLS combined with traditional convergent parameter embedded into this NTFTZNN can adjust the convergence rate according to the synchronization errors. For the sake of emphasizing the advantages of NTFTZNN model, other three sets of contrast models (FTZNN, VPZNN, and PTZNN) are constructed for the purpose of comparison. Besides, the predefined-time convergence and noise-tolerant ability of NTFTZNN model are distinctly demonstrated by detailed theoretical analysis. Furthermore, synchronization simulation experiments including two chaotic systems with different dimensions are provided to verify the related mathematical theories. Finally, the schematic of NTFTZNN model for chaos synchronization is accomplished completely through Simulink, further accentuating its effectiveness and potentials in practical applications.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.